Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document WWF: China Ecological Footprint Report 2012 Consumption, Production and Sustainable Development
From the Executive Summary p. 3 : "We have only one planet and the time has come to transform our present lifestyle and consumption patterns in order to halt the degradation of the Earth’s natural capital, and to secure ecosystem services as the foundation for economic and social development."
Located in Resources / Climate Science Documents
File PDF document A megacity in a changing climate: the case of Kolkata
Projections by the Intergovernmental Panel on Climate Change suggest that there will be an increase in the frequency and intensity of climate extremes in the 21st century. Kolkata, a megacity in India, has been singled out as one of the urban centers vulnerable to climate risks. Modest flooding during monsoons at high tide in the Hooghly River is a recurring hazard in Kolkata. More intense rainfall, riverine flooding, sea level rise, and coastal storm surges in a changing climate can lead to widespread and severe flooding and bring the city to a standstill for several days. Using rainfall data, high and low emissions scenarios, and sea level rise of 27 cm by 2050, this paper assesses the vulnerability of Kolkata to increasingly intense precipitation events for return periods of 30, 50, and 100 years. It makes location-specific inundation depth and duration projections using hydrological, hydraulic, and urban storm models with geographic overlays. High resolution spatial analysis provides a roadmap for designing adaptation schemes to minimize the impacts of climate change. The modeling results show that de-silting of the main sewers would reduce vulnerable population estimates by at least 5 %.
Located in Resources / Climate Science Documents
File PDF document C4 Photosynthesis: Differentiating Causation and Coincidence
Determination of the historical causes of organismal adaptations is difficult, but a recent study has suggested that at least one of the transitions to C4 photosynthesis was directly facilitated by changes in atmospheric CO2 levels. But what about the other 50+ origins of C4?
Located in Resources / Climate Science Documents
File PDF document Biodiversity Risks from Fossil Fuel Extraction
The overlapping of biodiverse areas and fossil fuel reserves indicates high-risk regions.
Located in Resources / Climate Science Documents
File PDF document Buried by bad decisions
From the text: Alas, research shows that when human beings make decisions, they tend to focus on what they are getting and forget about what we are forgoing.
Located in Resources / Climate Science Documents
File PDF document Correlations among species distributions, human density and human infrastructure across the high biodiversity tropical mountains of Africa
This paper explores whether spatial variation in the biodiversity values of vertebrates and plants (species richness, range-size rarity and number or proportion of IUCN Red Listed threatened species) of three African tropical mountain ranges (Eastern Arc, Albertine Rift and Cameroon-Nigeria mountains within the Biafran Forests and Highlands) co-vary with proxy measures of threat (human population density and human infrastructure). We find that species richness, range-size rarity, and threatened species scores are all significantly higher in these three tropical African mountain ranges than across the rest of sub-Saharan Africa. When compared with the rest of sub-Saharan Africa, human population density is only significantly higher in the Albertine Rift mountains, whereas human infrastructure is only significantly higher in the Albertine Rift and the Cameroon-Nigeria mountains. Statistically there are strong positive correlations between human density and species richness, endemism and density or proportion of threatened species across the three tropical African mountain ranges, and all of sub-Saharan Africa. Kendall partial rank-order correlation shows that across the African tropical mountains human popula- tion density, but not human infrastructure, best correlates with biodiversity values. This is not the case across all of sub-Saharan Africa where human density and human infra- structure both correlate almost equally well with biodiversity values. The primary conser- vation challenge in the African tropical mountains is a fairly dense and poor rural population that is reliant on farming for their livelihood. Conservation strategies have o address agricultural production and expansion, in some cases across the boundaries and into existing reserves. Strategies also have to maintain, or finalise, an adequate protected area network. Such strategies cannot be implemented in conflict with the local population, but have to find ways to provide benefits to the people living adjacent to the remaining for- ested areas, in return for their assistance in conserving the forest habitats, their biodiver- sity, and their ecosystem functions. Africa Biodiversity Human infrastructure Human population Tropical mountains
Located in Resources / Climate Science Documents
File PDF document Allometry of thermal variables in mammals: consequences of body size and phylogeny
A large number of analyses have examined how basal metabolic rate (BMR) is affected by body mass in mammals. By contrast, the critical ambient temperatures that define the thermo-neutral zone (TNZ), in which BMR is measured, have received much less attention. We provide the first phylogenetic analyses on scaling of lower and upper critical temperatures and the breadth of the TNZ in 204 mammal species from diverse orders. The phylogenetic signal of thermal variables was strong for all variables analysed. Most allometric relationships between thermal variables and body mass were significant and regressions using phylogenetic analyses fitted the data better than conventional regressions. Allometric exponents for all mammals were 0.19 for the lower critical temperature (expressed as body temperature - lower critical temperature), −0.027 for the upper critical temperature, and 0.17 for the breadth of TNZ. The small exponents for the breadth of the TNZ compared to the large exponents for BMR suggest that BMR per se affects the influence of body mass on TNZ only marginally. However, the breadth of the TNZ is also related to the apparent thermal conductance and it is therefore possible that BMR at different body masses is a function of both the heat exchange in the TNZ and that encountered below and above the TNZ to permit effective homeothermic thermoregulation. Keywords: allometry,lower critical temperature,mammals,marsupials,thermal neutral zone,upper critical temperature.
Located in Resources / Climate Science Documents
File PDF document Climate change and tropical biodiversity: a new focus
Considerable efforts are focused on the consequences of climate change for tropical rainforests. However, potentially the greatest threats to tropical biodiversity (synergistic interactions between climatic changes and human land use) remain understudied. Key concerns are that aridification could increase the accessibility of previously non-arable or remote lands, elevate fire impacts and exacerbate ecological effects of habitat disturbance. The growing climatic change literature often fails to appreciate that, in coming decades, climate–land use interac- tions might be at least as important as abiotic changes per se for the fate of tropical biodiversity. In this review, we argue that protected area expansion along key ecological gradients, regulation of human-lit fires, strategic forest–carbon financing and re-evaluations of agricultural and biofuel subsidies could ameliorate some of these synergistic threats.
Located in Resources / Climate Science Documents
File PDF document Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population
Ecological responses to on-going climate change are numerous, diverse, and taxonomically widespread. However, with one exception, the relative roles of phenotypic plasticity and microevolution as mechanisms in explaining these responses are largely unknown. Several recent studies have uncovered evidence for temporal declines in mean body sizes of birds and mammals, and these responses have been interpreted as evidence for microevolution in the context of Bergmann’s rule—an ecogeographic rule predicting an inverse correlation between temperature and mean body size in endothermic animals. We used a dataset of individually marked red-billed gulls (Larus novaehollandiae scopulinus) from New Zealand to document phenotypic and genetic changes in mean body mass over a 47-year (1958–2004) period. We found that, whereas the mean body mass had decreased over time as ambient temperatures increased, analyses of breeding values estimated with an ‘‘animal model’’ approach showed no evidence for any genetic change. These results indicate that the frequently observed climate-change-related responses in mean body size of animal populations might be due to phenotypic plasticity, rather than to genetic microevolutionary responses.
Located in Resources / Climate Science Documents
File PDF document Bird population trends are linearly affected by climate change along species thermal ranges
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.
Located in Resources / Climate Science Documents