Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Feedbacks of Terrestrial Ecosystems to Climate Change
Most modeling studies on terrestrial feedbacks to warming over the twenty-first century imply that the net feedbacks are negative—that changes in ecosystems, on the whole, resist warming, largely through ecosystem carbon storage. Although it is clear that potentially important mechanisms can lead to carbon storage, a number of less well- understood mechanisms, several of which are rarely or incompletely modeled, tend to diminish the negative feedbacks or lead to positive feedbacks. At high latitudes, negative feedbacks from forest expansion are likely to be largely or completely compensated by positive feedbacks from decreased albedo, increased carbon emissions from thawed permafrost, and increased wildfire. At low latitudes, negative feedbacks to warming will be decreased or eliminated, largely through direct human impacts. With modest warming, net feedbacks of terrestrial ecosystems to warming are likely to be negative in the tropics and positive at high latitudes. Larger amounts of warming will generally push the feedbacks toward the positive.
Located in Resources / Climate Science Documents
File PDF document Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants
The energy returned on investment, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no “primary energy weighting”, updated material databases, and updated technical pro- cedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an “unbuffered” scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power
Located in Resources / Climate Science Documents
File PDF document Bias in the attribution of forest carbon sinks
A substantial fraction of the terrestrial carbon sink, past and present, may be incorrectly attributed to environmental change rather than changes in forest management.
Located in Resources / Climate Science Documents
File PDF document EPA and the Army Corps’ Proposed Rule to Define “Waters of the United States”
Excerpt from summary : According to the agencies, the proposed rule would revise the existing regulatory definition of “waters of the United States” consistent with legal rulings—especially the Supreme Court cases—and science concerning the interconnectedness of tributaries, wetlands, and other waters to downstream waters and effects of these connections on the chemical, physical, and biological integrity of downstream waters. Waters that are “jurisdictional” are subject to the multiple regulatory requirements of the CWA: standards, discharge limitations, permits, and enforcement. Non-jurisdictional waters, in contrast, do not have the federal legal protection of those requirements. This report describes the March 25 proposed rule and includes a table comparing the existing regulatory language that defines “waters of the United States” with that in the proposal.
Located in Resources / Climate Science Documents
File Elevated Eocene Atmospheric CO2 and Its Subsequent Decline
Closing paragraph: Estimates of early Eocene atmospheric CO2 from Green River sodium carbonates are in the same range as those predicted by geochemical models (7). By È20 Ma, all available data (8) suggest ECO2^atm was at or near modern concentrations.
Located in Resources / Climate Science Documents
File PDF document Citizen Involvement in the U.S. Endangered Species Act
Data on listed species refute critiques of citizen involvement in the U.S. Endangered Species Act.
Located in Resources / Climate Science Documents
File PDF document Alleles underlying larval foraging behaviour influence adult dispersal in nature
The dispersal and migration of organisms have resulted in the colonisation of nearly every possible habitat and ultimately the extraordinary diversity of life. Animal dispersal tendencies are commonly heterogeneous (e.g. long vs. short) and non-random suggesting that phenotypic and genotypic variability between individuals can contribute to population-level heterogeneity in dis- persal. Using laboratory and field experiments, we demonstrate that natural allelic variation in a gene underlying a foraging polymorphism in larval fruit flies (for), also influences their dispersal tendencies as adults. Rover flies (forR; higher foraging activity) have consistently greater dispersal tendencies and are more likely to disperse longer distances than sitter flies (fors; lower foraging activity). Increasing for expression in the brain and nervous system increases dispersal in sitter flies. Our study supports the notion that variation in dispersal can be driven by intrinsic variation in food-dependent search behaviours and confirms that single gene pleiotropic effects can contrib- ute to population-level heterogeneity in dispersal.
Located in Resources / Climate Science Documents
File PDF document Biodiversity effects on ecosystem functioning change along environmental stress gradients
Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity–ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low-diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems.
Located in Resources / Climate Science Documents
File PDF document Energetic and biomechanical constraints on animal migration distance
Animal migration is one of the great wonders of nature, but the factors that determine how far migrants travel remain poorly understood. We present a new quantitative model of animal migration and use it to describe the maximum migration distance of walking, swimming and flying migrants. The model combines biomechanics and metabolic scaling to show how maximum migration distance is constrained by body size for each mode of travel. The model also indicates that the number of body lengths travelled by walking and swimming migrants should be approximately invariant of body size. Data from over 200 species of migratory birds, mammals, fish, and invertebrates support the central conclusion of the model – that body size drives variation in maximum migration distance among species through its effects on metabolism and the cost of locomotion. The model provides a new tool to enhance general understanding of the ecology and evolution of migration.
Located in Resources / Climate Science Documents
File PDF document Effects of tree mortality caused by a bark beetle outbreak on the ant community in the San Bernardino National Forest
Ants are used as bioindicators of the effects of disturbance on ecosystems for several reasons. First, ants are generally responsive to alteration of the biomass and diversity of the local plant community (Kalif et al., 2001) and other environmental variables (Underwood & Fisher, 2006). Second, because they occupy fixed nest locations, ants are affected by conditions on a very small scale, so that their presence and abundance are a better indicator of local conditions than are the presence or abundance of more mobile animals (Stephens & Wagner, 2006; Underwood & Fisher, 2006). Ants play important ecosystem roles and are therefore often a relevant choice for monitoring (Ho ̈lldobler & Wilson, 1990). They make up a significant percentage of the animal biomass in many ecosystems, they can be crucial to processes such as soil mixing and nutrient transport (Gentry & Stiritz, 1972), and they are important players in nutrient cycling and energy flow. Ants can also strongly influence the plant community via seed dispersal and granivory (Christian, 2001; Barrow et al., 2007). While the diversity of a given taxon is often not a reliable indicator of the diversity of other groups (Lawton et al., 1998; Bennett et al., 2009; Maleque et al., 2009; Wike et al., 2010), ant diversity is known to reflect the diversity of other invertebrates in ecosystems recovering from a disturbance in some cases (Andersen & Majer, 2004).The use of ants as bioindicators must be undertaken with caution (Underwood & Fisher, 2006). Different ant communities do not always respond to a disturbance in the same way (Arnan et al., 2009). In addition, broad measures of a bioindicator taxon, such as species richness or abundance, are potentially misleading. For instance, while it is popular to measure the species richness of bioindicator groups, the ant species richness of different habitats has been observed to respond differently to similar disturbances (Farji-Brener et al., 2002; Ratchford et al., 2005; Barrow et al., 2007), and ant species richness often does not respond at all unless disturbances are extreme (Andersen & Majer, 2004).Nonetheless, changes in the ant community can provide useful information about the responses of the ecosystem as a whole.
Located in Resources / Climate Science Documents