Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document EPA and the Army Corps’ Proposed Rule to Define “Waters of the United States”
Excerpt from summary : According to the agencies, the proposed rule would revise the existing regulatory definition of “waters of the United States” consistent with legal rulings—especially the Supreme Court cases—and science concerning the interconnectedness of tributaries, wetlands, and other waters to downstream waters and effects of these connections on the chemical, physical, and biological integrity of downstream waters. Waters that are “jurisdictional” are subject to the multiple regulatory requirements of the CWA: standards, discharge limitations, permits, and enforcement. Non-jurisdictional waters, in contrast, do not have the federal legal protection of those requirements. This report describes the March 25 proposed rule and includes a table comparing the existing regulatory language that defines “waters of the United States” with that in the proposal.
Located in Resources / Climate Science Documents
EPA Releases Agency Plans for Adapting to a Changing Climate
The U.S. Environmental Protection Agency (EPA) today released its draft Climate Change Adaptation Implementation Plans for public review and comment. In support of President Obama’s Climate Action Plan and Executive Order on Preparing the United States for the Impacts of Climate Change announced today, the Implementation Plans provide detailed information about the actions EPA plans to take across the country to help communities adapt to a changing climate.
Located in News & Events
File PDF document EPA_MBP_2012_VULNERABILITY_ASSESSESSMENTS_.CLIMATE CHANGEpdf.pdf
..
Located in LP Members / / Project Documents / Literature
File PDF document ESSAY : The worst-case scenario
Stephen Schneider explores what a world with 1,000 parts per million of CO2 in its atmosphere might look like.
Located in Resources / Climate Science Documents
Project Evaluating Effect of Climate Change on River Flows in the Clinch River Basin
A new project by the U.S. Geological Survey is evaluating the potential cascading effects to river flows and quality aquatic habitat due to changes in climate within an ecologically important area of the Appalachian LCC. A greater understanding of likely flow changes within the Virginia portion of the Clinch River Basin will allow managers to better respond to alterations and degradation of physical habitat. Information and results from this study will also provide managers with methods to be applied throughout the Appalachian LCC region. (Photo by Virginia Department of Game and Inland Fisheries)
Located in Research
File PDF document Evaluating the Effects and Effectiveness of Post-fire Seeding Treatments in Western Forests
Key Findings• In studies that evaluated soil erosion in seeded versus unseeded controls, 78 percent revealed that seeding did not reduce erosion relative to unseeded controls. Even when seeding significantly increased vegetative cover, there was insufficient plant cover to stabilize soils within the first two years after fire. •Sixty percent of the studies reported that seeding deterred native plant recovery in the short-term. •Out of 11 papers that evaluated the ability of seeding to curtail non-native plant species invasions, 54 percent stated that seeding treatments were effective and 45 percent stated they were ineffective.• Forty papers and 67 Burned Area Reports dated between 1970 and 2006 revealed an increased use of native species and annual cereal grains/hybrids during seeding treatments over time, with native species dominating seed mixes. • From 2000 to 2007, total Burned Area Emergency Response (BAER) seeding expenditures have increased substantially, reaching an average of $3.3 million per year—a 192 percent increase compared to the average spent over the previous 30 years.
Located in Resources / Climate Science Documents
File C header Evaporative cooling over the Tibetan Plateau induced by vegetation growth
Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.
Located in Resources / Climate Science Documents
File PDF document Evolution of climate niches in European mammals?
Our ability to predict consequences of climate change is severely impaired by the lack of knowledge on the ability of species to adapt to changing environmental conditions. We used distribution data for 140 mammal species in Europe, together with data on climate, land cover and topography, to derive a statistical description of their realized climate niche. We then compared climate niche overlap of pairs of species, selected on the basis of phylogenetic information. In contrast to expectations, related species were not similar in their climate niche. Rather, even species pairs that had a common ancestor less than 1Ma already display very high climate niche distances. We interpret our finding as a strong inter- specific competitive constraint on the realized niche, rather than a rapid evolution of the fundamental niche. If correct, our results imply a very limited usefulness of climate niche models for the prediction of future mammal distributions.
Located in Resources / Climate Science Documents
File PDF document Evolution of Grasses and Grassland Ecosystems
The evolution and subsequent ecological expansion of grasses (Poaceae) since the Late Cretaceous have resulted in the establishment of one of Earth’s dominant biomes, the temperate and tropical grasslands, at the expense of forests. In the past decades, several new approaches have been applied to the fossil record of grasses to elucidate the patterns and processes of this ecosystem transformation. The data indicate that the development of grassland ecosystems on most continents was a multistage process involving the Pale- ogene appearance of (C3 and C4) open-habitat grasses, the mid-late Cenozoic spread of C3 grass-dominated habitats, and, finally, the Late Neogene expansion of C4 grasses at tropical-subtropical latitudes. The evolution of herbivores adapted to grasslands did not necessarily coincide with the spread of open-habitat grasses. In addition, the timing of these evolutionary and ecological events varied between regions. Consequently, region-by-region investigations using both direct (plant fossils) and indirect (e.g., stable carbon isotopes, faunas) evidence are required for a full understanding of the tempo and mode of grass and grassland evolution.
Located in Resources / Climate Science Documents
File PDF document Evolution of natural and social science interactions in global change research programs
Efforts to develop a global understanding of the functioning of the Earth as a system began in the mid-1980s. This effort necessitated linking knowledge from both the physical and biological realms. A motivation for this development was the growing impact of humans on the Earth system and need to provide solutions, but the study of the social drivers and their consequences for the changes that were occurring was not incorporated into the Earth System Science movement, despite early attempts to do so. The impediments to integration were many, but they are gradually being overcome, which can be seen in many trends for assessments, such as the Intergovernmental Platform on Biodiversity and Ecosystem Services, as well as both basic and applied science programs. In this development, particular people and events have shaped the trajectories that have occurred. The lessons learned should be considered in such emerging research programs as Future Earth, the new global program for sustainability research. The transitioning process to this new program will take time as scientists adjust to new colleagues with different ideologies, methods, and tools and a new way of doing science.
Located in Resources / Climate Science Documents