Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File ECONOMICS IN A FULL WORLD
The global economy is now so large that society can no longer safely pretend it operates within a limitless ecosystem. Developing an economy that can be sustained within the finite biosphere requires new ways of thinking
Located in Resources / Climate Science Documents
File ECMAScript program Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States
Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.
Located in Resources / Climate Science Documents
File PDF document Ecosystem Disturbance, Carbon, and Climate
Models of climate change effects should incorporate land-use changes and episodic disturbances such as fires and insect epidemics.
Located in Resources / Climate Science Documents
File PDF document Ecosystem Processes and Human Influences Regulate Streamflow Response to Climate Change at Long-Term Ecological Research Sites
Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-deficit ecosystems. Streamflow was correlated with climate variability indices (e.g., the El Niño–Southern Oscillation, the Pacific Decadal Oscillation, the North Atlantic Oscillation), especially in seasons when vegetation influences are limited. Air temperature increased significantly at 17 of the 19 sites with 20- to 60-year records, but streamflow trends were directly related to climate trends (through changes in ice and snow) at only 7 sites. Past and present human and natural disturbance, vegetation succession, and human water use can mimic, exacerbate, counteract, or mask the effects of climate change on streamflow, even in reference basins. Long-term ecological research sites are ideal places to disentangle these processes.
Located in Resources / Climate Science Documents
File PDF document Ecosystem Service Markets 101: Supply and Demand for Nature
Establishing markets for ecosystem services—the benefits that nature provides, such as clean air, water, and wildlife habitat—has gained traction in some circles as a way to finance the conservation of these public goods. Market influences on supply and demand work in tandem to encourageecosystem protection. Jeff Kline and Trista Patterson, scientists with the Pacific Northwest (PNW) Research Station, have identified several criteria needed for ecosystem service markets to achieve their potential. These include regulatory limits on environmental damage, ecosystem services that are amenable to trading, and manageable transaction costs related to administering market programs and the necessary measuring and monitoring of marketed resources. If these criteria are not met, other conservation methods such as conservation easements, landowner incentive programs for environmental enhancement or protection, or taxes on environmental damage may be more effective. Discussions about ecosystem services often focus on increasing supply— storing more carbon or delivering more water, for example. However, net pressures on ecosystems can also be reduced by addressing consumption. Many energy efficiencies can be achieved by promoting awareness, informed choices, and behavior change. The PNW Research Station is examining both supply and demand approaches to ecosystem protection by encouraging the development of ecosystem services markets and identifying ways to reduce its own environmental footprint.
Located in Resources / Climate Science Documents
File PDF document Ecosystem services: From theory to implementation
Around the world, leaders are increasingly recognizing ecosystems as natural capital assets that supply life-support services of tremendous value. The challenge is to turn this recognition into incentives and institutions that will guide wise investments in natural capital, on a large scale. Advances are required on three key fronts, each featured here: the science of ecosystem production functions and service mapping; the design of appropriate finance, policy, and governance systems; and the art of implementing these in diverse biophysical and social contexts. Scientific understanding of ecosystem production functions is improving rapidly but remains a limiting factor in incorporating natural capital into decisions, via systems of national accounting and other mechanisms. Novel institutional structures are being established for a broad array of services and places, creating a need and opportunity for systematic assessment of their scope and limitations. Finally, it is clear that formal sharing of experience, and defining of priorities for future work, could greatly accelerate the rate of innova- tion and uptake of new approaches.
Located in Resources / Climate Science Documents
File PDF document Editorial : Beyond forest carbon
The preservation of forests, both on land and in mangrove swamps, has received much attention in the move to protect biological carbon stores. Less conspicuous communities of organisms deserve some scrutiny, too.
Located in Resources / Climate Science Documents
File PDF document Editorial : Half-hearted engineering
Climate warming is not the only consequence of rising levels of atmospheric greenhouse gases. The only way to counter all effects, including those on rainfall and ocean acidity, is to remove carbon from the climate system. Arguably, some of the most immediate impacts of a warming climate will result from shifts in global rainfall patterns. The potential threats are diverse, and include water scarcity in the lush Amazonian rainforest; increased drought in the already parched southwestern United States; rainfall replacing snow in low-latitude mountain regions; and a rise in flooding in temperate climates. Whatever the exact outcome of these threats, the stability of the world’s economy and ecosystem both depend on maintaining precipitation patterns more or less as they are today.
Located in Resources / Climate Science Documents
File PDF document Editorial: The “New Conservation”
EDITORIAL: OPENING PARAGRAPHS A powerful but chimeric movement is rapidly gaining recognition and supporters. Christened the “new conservation,” it promotes economic development, poverty alleviation, and corporate partnerships as surrogates or substitutes for endangered species listings, protected areas, and other mainstream conservation tools. Its proponents claim that helping economically disadvantaged people to achieve a higher standard of living will kindle their sympathy and affection for nature. Because its goal is to supplant the biological diversity–based model of traditional conservation with something entirely different, namely an economic growth–based or humanitarian movement, it does not deserve to be labeled conservation.
Located in Resources / Climate Science Documents
File PDF document Education for a Sustainable Future
Sustainability is being integrated into higher-education institutions’ mission and planning, curricula, research, student life, and operations.
Located in Resources / Climate Science Documents