Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
Downscaling Scenarios of Climate Change Project to Map Entire Appalachian LCC Region
A DOI Southeast Climate Science Center funded project will be evaluating the latest generation of global climate models to generate scenarios of future change to climate, hydrology, and vegetation for the Southeastern U.S. as well as the entire range of the Appalachian LCC.
Located in News & Events
File application/x-troff-ms Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams
Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water tem- perature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species’ distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions.
Located in Resources / Climate Science Documents
File PDF document Dramatically increasing chance of extremely hot summers since the 2003 European heatwave
Socio-economic stress from the unequivocal warming of the global climate system(1)could be mostly felt by societies through weather and climate extremes (2). The vulnerability of European citizens was made evident during the summer heatwave of 2003 (refs 3,4) when the heat-related death toll ran into tens of thousands (5). Human influence at least doubled the chances of the event according to the first formal event attribution study (6), which also made the ominous forecast that severe heatwaves could become commonplace by the 2040s. Here we investigate how the likelihood of having another extremely hot summer in one of the worst affected parts of Europe has changed ten years after the original study was published, given an observed summer temperature increase of 0.81 K since then. Our analysis benefits from the availability of new observations and data from several new models. Using a previously employed temperature threshold to define extremely hot summers, we find that events that would occur twice a century in the early 2000s are now expected to occur twice a decade. For the more extreme threshold observed in 2003, the return time reduces from thousands of years in the late twentieth century to about a hundred years in little over a decade.
Located in Resources / Climate Science Documents
File PDF document Drought in the United States: Causes and Issues for Congress
Drought is a natural hazard with often significant societal, economic, and environmental consequences. Public policy issues related to drought range from how to identify and measure drought to how best to prepare for, mitigate, and respond to drought impacts, and who should bear associated costs. Severe drought in 2011 and 2012 fueled congressional interest in near-term issues, such as current (and recently expired) federal programs and their funding, and long-term issues, such as drought forecasting and various federal drought relief and mitigation actions. Continuing drought conditions throughout the country contribute to ongoing interest in federal drought policies and responses. As of April 2013, drought has persisted across approximately two-thirds of the United States and is threatening agricultural production and other sectors. More than 1,180 counties so far have been designated as disaster areas for the 2013 crop season, including 286 counties contiguous to primary drought counties. In comparison, in August 2012, more than 1,400 counties in 33 states had been designated as disaster counties by the U.S. Secretary of Agriculture. Most attention in the 112th Congress focused on the extension of expired disaster assistance programs in separate versions of a 2012 farm bill. Attention in the 113th Congress again is expected to focus on farm bill legislation; however, other bills addressing different aspects of drought policy and response have also been introduced. (For information regarding drought disaster assistance for agricultural producers, see CRS Report RS21212, Agricultural Disaster Assistance. For information on the 2012 bill, see CRS Report R42552, The 2012 Farm Bill: A Comparison of Senate-Passed S. 3240 and the House Agriculture Committee’s H.R. 6083 with Current Law.) Although agricultural losses typically dominate drought impacts, federal drought activities are not limited to agriculture. For example, the 2012 drought raised congressional interest in whether and to what extent other federal agencies have and are using authorities to address drought. Similarly, the President in August 2012 convened the White House Rural Council to assess executive branch agencies’ responses to the ongoing drought. The Administration shortly thereafter announced several new administrative actions to address the drought. While numerous federal programs address different aspects of drought, no comprehensive national drought policy exists. A 2000 National Drought Policy Commission noted the patchwork nature of drought programs, and that despite a major federal role in responding to drought, no single federal agency leads or coordinates drought programs—instead, the federal role is more of “crisis management.” Congress may opt to revisit the commission’s recommendations. Congress also may consider proposals to manage drought impacts, such as authorizing new assistance to develop or augment water supplies for localities, industries, and agriculture—or providing funding for such activities where authorities already exist. Congress also may address how the two major federal water management agencies, the U.S. Army Corps of Engineers and the Bureau of Reclamation, plan for and respond to drought. This report describes the physical causes of drought, drought history in the United States, and policy challenges related to drought. It also provides examples of recurrent regional drought conditions. For information on federal agricultural disaster assistance and related legislation, see the CRS reports noted above.
Located in Resources / Climate Science Documents
File PDF document Drought Sensitivity of the Amazon Rainforest
Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.
Located in Resources / Climate Science Documents
File PDF document Drought, disease, defoliation and death: forest pathogens as agents of past vegetation change
The temperate and boreal forests of Europe and North America have been subject to repeated pathogen (fungal disease and phytophagus insect) outbreaks over the last 100 years. Palaeoecology can, potentially, offer a long-term perspective on such disturbance episodes, providing information on their triggers, frequency and impact. Mid-Holocene declines in Tsuga and Ulmus pollen dominate the Quaternary literature on forest pathogens, yet the role of pathogens, and even the presence of pathogenic fungal diseases, during these events has yet to be established. Pathogen-focused research strategies, informed by the sequence of events documented in modern outbreaks, and undertaken at high temporal resolution using a multi-proxy approach, are required. It is argued that forest pathogens are likely to have been significant agents of past vegetation change, even in cases where climate change was the primary stress factor.
Located in Resources / Climate Science Documents
File PDF document Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk
Forest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and car- bon-cycle feedbacks. Recent drought-induced, widespread forest die-offs highlight that climate change could acceler- ate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and pre- cludes mechanistic modeling and prediction of forest die-off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die-off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumu- lated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavita- tion, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deteri- oration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vul- nerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate–vege- tation models. Finally, our findings highlight the critical role of drought stress accumulation and repair of stress- induced damage for avoiding plant mortality, presenting a dynamic and contingent framework for drought impacts on forest ecosystems. Keywords: biosphere–atmosphere interactions, climate change, ecosystem shift, forest mortality, vegetation model, xylem cavitation, dieoff
Located in Resources / Climate Science Documents
File Duality in climate science
Delivery of palatable 2 °C mitigation scenarios depends on speculative negative emissions or changing the past. Scientists must make their assumptions transparent and defensible, however politically uncomfortable the conclusions.
Located in Resources / Climate Science Documents
File PDF document Early warning signals of extinction in deteriorating environments
During the decline to extinction, animal populations may present dynamical phenomena not exhibited by robust populations (1,2). Some of these phenomena, such as the scaling of demographic variance, are related to small size (3–6) whereas others result from density- dependent nonlinearities (7). Although understanding the causes of population extinction has been a central problem in theoretical biology for decades (8), the ability to anticipate extinction has remained elusive (9). Here we argue that the causes of a population’s decline are central to the predictability of its extinction. Specifically, environmental degradation may cause a tipping point in population dynamics, corresponding to a bifurcation in the underlying population growth equations, beyond which decline to extinction is almost certain. In such cases, imminent extinction will be signalled by critical slowing down (CSD) critical slowing down
Located in Resources / Climate Science Documents
File PDF document Early Warnings of Regime Shifts: A Whole-Ecosystem Experiment
Catastrophic ecological regime shifts may be announced in advance by statistical early warning signals such as slowing return rates from perturbation and rising variance. The theoretical background for these indicators is rich, but real-world tests are rare, especially for whole ecosystems. We tested the hypothesis that these statistics would be early warning signals for an experimentally induced regime shift in an aquatic food web. We gradually added top predators to a lake over 3 years to destabilize its food web. An adjacent lake was monitored simultaneously as a reference ecosystem. Warning signals of a regime shift were evident in the manipulated lake during reorganization of the food web more than a year before the food web transition was complete, corroborating theory for leading indicators of ecological regime shifts. Critical slowing down
Located in Resources / Climate Science Documents