Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
In Hot Water: Climate Change is Affecting North American Fish
Climate change is already affecting inland fish across North America -- including some fish that are popular with anglers. Scientists are seeing a variety of changes in how inland fish reproduce, grow and where they can live.
Located in News & Events
Southern Appalachian Forest Water Yield Down since 1970s
Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population.
Located in News & Events
Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015
2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network.
Located in News & Events
Mountain Streams Offer Climate Refuge
A new study offers hope for cold-water species in the face of climate change. The study, published today in the Proceedings of the National Academy of Sciences, addresses a longstanding paradox between predictions of widespread extinctions of cold-water species and a general lack of evidence for those extinctions despite decades of recent climate change.
Located in News & Events
New Climate Change Vulnerability Assessments Available for Species and Habitats
New climate change vulnerability assessments for 41 species and 3 habitats in the Appalachians are now available on the applcc.org Web Portal.
Located in News & Events
Climate Adaptation Fund Announce Latest round of Grantmaking
Read the 2016 Request for Proposals, review the Applicant Guidance Document and submit a completed WCS Pre-proposal Application using our online application form no later than 5:00 PM EDT on Friday, April 8, 2016.
Located in News & Events
Service and partners announce science-based tool to help prioritize and target fish habitat conservation
The U.S. Fish and Wildlife Service and North Atlantic Landscape Conservation Cooperative (LCC) today announce the availability of an online tool that enables users to target and prioritize fish habitat conservation in the face of climate and land use change.
Located in News & Events
NASA, NOAA Analyses Reveal Record-Shattering Global Warm Temperatures in 2015
Earth’s 2015 surface temperatures were the warmest since modern record keeping began in 1880, according to independent analyses by NASA and the National Oceanic and Atmospheric Administration (NOAA).
Located in News & Events
File Global separation of plant transpiration from groundwater and streamflow
Current land surface models assume that groundwater, streamflow and plant transpiration are all sourced and mediated by the same well mixed water reservoir—the soil. However, recent work in Oregon1 and Mexico2 has shown evidence of ecohydrological sepa- ration, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the combined fluxes of groundwater and streamflow. These findings have not yet been widely tested. Here we use hydrogen and oxygen isotopic data (2H/1H (d2H) and 18O/16O (d18O)) from 47 globally distrib- uted sites to show that ecohydrological separation is widespread across different biomes. Precipitation, stream water and ground- water from each site plot approximately along the d2H/d18O slope of local precipitation inputs. But soil and plant xylem waters extracted from the 47 sites all plot below the local stream water and groundwater on the meteoric water line, suggesting that plants use soil water that does not itself contribute to groundwater recharge or streamflow. Our results further show that, at 80% of the sites, the precipitation that supplies groundwater recharge and streamflow is different from the water that supplies parts of soil water recharge and plant transpiration. The ubiquity of subsurface water compartmentalization found here, and the segregation of storm types relative to hydrological and ecological fluxes, may be used to improve numerical simulations of runoff generation, stream water transit time and evaporation–transpiration partitioning. Future land surface model parameterizations should be closely examined for how vegetation, groundwater recharge and streamflow are assumed to be coupled.
Located in Resources / Climate Science Documents
File The global volume and distribution of modern groundwater
Groundwater is important for energy and food security, human health and ecosystems. The time since groundwater was recharged—or groundwater age—can be important for diverse geologic processes, such as chemical weathering, ocean eutrophication and climate change. However, measured groundwater ages range from months to millions of years. The global volume and distribution of groundwater less than 50 years old—modern groundwater that is the most recently recharged and also the most vulnerable to global change—are unknown. Here we combine geochemical, geologic, hydrologic and geospatial data sets with numerical simulations of groundwater and analyse tritium ages to show that less than 6% of the groundwater in the uppermost portion of Earth’s landmass is modern. We find that the total groundwater volume in the upper 2 km of continental crust is approximately 22.6 million km3 , of which 0.1–5.0 million km3 is less than 50 years old. Although modern groundwater represents a small percentage of the total groundwater on Earth, the volume of modern groundwater is equivalent to a body of water with a depth of about 3 m spread over the continents. This water resource dwarfs all other components of the active hydrologic cycle.
Located in Resources / Climate Science Documents