Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File Troff document Increasing Northern Hemisphere water deficit
A monthly water-balance model is used with CRUTS3.1 gridded monthly precip- itation and potential evapotranspiration (PET) data to examine changes in global water deficit (PET minus actual evapotranspiration) for the Northern Hemisphere (NH) for the years 1905 through 2009. Results show that NH deficit increased dramatically near the year 2000 during both the cool (October through March) and warm (April through September) seasons. The increase in water deficit near 2000 coincides with a substantial increase in NH temperature and PET. The most pronounced increases in deficit occurred for the latitudinal band from 0 to 40°N. These results indicate that global warming has increased the water deficit in the NH and that the increase since 2000 is unprecedented for the 1905 through 2009 period. Additionally, coincident with the increase in deficit near 2000, mean NH runoff also increased due to increases in P. We explain the apparent contradiction of concurrent increases in deficit and increases in runoff.
Located in Resources / Climate Science Documents
File PDF document Insect herbivory alters impact of atmospheric change on northern temperate forests
Stimulation of forest productivity by elevated concentrations of CO2 is expected to partially offset continued increases in anthropogenic CO2 emissions. However, multiple factors can impair the capacity of forests to act as carbon sinks; prominent among these are tropospheric O3 and nutrient limitations (1,2). Herbivorous insects also influence carbon and nutrient dynamics in forest ecosystems, yet are often ignored in ecosystem models of forest productivity. Here we assess the effects of elevated levels of CO2 and O3 on insect-mediated canopy damage and organic matter deposition in aspen and birch stands at the Aspen FACE facility in northern Wisconsin, United States. Canopy damage was markedly higher in the elevated CO2 stands, as was the deposition of organic substrates and nitrogen. The opposite trends were apparent in the elevated O3 stands. Using a light-use efficiency model, we show that the negative impacts of herbivorous insects on net primary production more than doubled under elevated concentrations of CO2, but decreased under elevated concentrations of O3. We conclude that herbivorous insects may limit the capacity of forests to function as sinks for anthropogenic carbon emissions in a high CO2 world.
Located in Resources / Climate Science Documents
File Integration and scaling of UV-B radiation effects on plants: from DNA to leaf
A process-based model integrating the effects of UV-B radiation through epidermis, cellular DNA, and its consequences to the leaf expansion was developed from key parameters in the published literature. Enhanced UV-B radiation- induced DNA damage significantly delayed cell division, resulting in significant reductions in leaf growth and development. Ambient UV-B radiation-induced DNA damage significantly reduced the leaf growth of species with high relative epidermal absorbance at longer wavelengths and average/low pyrimidine cyclob- utane dimers (CPD) photorepair rates. Leaf expansion was highly dependent on the number of CPD present in the DNA, as a result of UV-B radiation dose, quantitative and qualitative absorptive properties of epidermal pigments, and repair mechanisms. Formation of pyrimidine-pyrimidone (6-4) photoproducts (6-4PP) has no effect on the leaf expansion. Repair mechanisms could not solely prevent the UV-B radiation interference with the cell division. Avoidance or effective shielding by increased or modified qualitative epidermal absorptance was required. Sustained increased UV-B radiation levels are more detri-mental than short, high doses of UV-B radiation. The combination of low temperature and increased UV-B radiation was more significant in the level of UV-B radiation-induced damage than UV-B radiation alone. Slow-growing leaves were more affected by increased UV-B radiation than fast-growing leaves.
Located in Resources / Climate Science Documents
Interior Announces FY 2013 Climate Science Center Research Projects
In 2013 the Climate Science Centers are awarding nearly $7 million to universities and other partners for research as part of President Obama’s Climate Action Plan to reduce carbon pollution, move our economy toward clean energy sources and begin to prepare our communities for the impacts of climate change.
Located in News & Events
Interior Appoints New Climate Change Advisory Committee
Secretary of the Interior Sally Jewell today announced the members of a newly created federal advisory committee who will provide guidance about the Interior Department’s climate change adaptation science initiatives.
Located in News & Events
Interior Low Plateau Climate Change Vulnerability Species Assessments
These results are a compilation of climate change vulnerability assessments in the western portion of the LCC, covering the area from Western Kentucky, northeastern Alabama and western Tennessee west to southern Indiana and southeastern Illinois.
Located in Vulnerability / Climate Change Vulnerability / Vulnerability Assessment Foundational Data by Subregion
Interior Low Plateau Climate Change Vulnerability Species Assessments
These results are a compilation of climate change vulnerability assessments in the western portion of the LCC, covering the area from Western Kentucky, northeastern Alabama and western Tennessee west to southern Indiana and southeastern Illinois.
Located in Research / / Assessing Vulnerability of Species and Habitats to Large-scale Impacts / Vulnerability Assessment Foundational Data by Subregion
File text/texmacs Interior Low Plateau subregion climate change vulnerability species assessments
These results are a compilation of climate change vulnerability assessments in the western portion of the LCC, covering the area from Western Kentucky, northeastern Alabama and western Tennessee west to southern Indiana and southeastern Illinois. Results included are from Bruno et al. (Cumberland Piedmont Network of the National Park Service; and Walk et al. 2011 (illinois). It also includes the results from species assessed as part of the current study (Sneddon et al. 2015).
Located in Vulnerability / Climate Change Vulnerability / Vulnerability Assessment Foundational Data by Subregion
File text/texmacs Interior Low Plateau subregion climate change vulnerability species assessments
These results are a compilation of climate change vulnerability assessments in the western portion of the LCC, covering the area from Western Kentucky, northeastern Alabama and western Tennessee west to southern Indiana and southeastern Illinois. Results included are from Bruno et al. (Cumberland Piedmont Network of the National Park Service; and Walk et al. 2011 (illinois). It also includes the results from species assessed as part of the current study (Sneddon et al. 2015).
Located in Research / / Assessing Vulnerability of Species and Habitats to Large-scale Impacts / Vulnerability Assessment Foundational Data by Subregion
Interior Releases First National Interactive Map of Onshore Wind Turbines
USGS Scientific Tool to Aid Landscape-Level Planning, Responsible Renewable Energy Development, Support Climate Action Plan
Located in News & Events