Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File Conservation in a social-ecological system experiencing climate-induced tree mortality
We present a social-ecological framework to provide insight into climate adaptation strategies and diverse perspectives on interventions in protected areas for species experiencing climate-induced impacts. To develop this framework, we examined the current ecological condition of a culturally and commercially valuable species, considered the predicted future effects of climate change on that species in a protected area, and assessed the perspectives held by forest users and managers on future adaptive practices. We mapped the distribution of yellow-cedar (Callitropsis nootkatensis) and examined its health status in Glacier Bay National Park and Preserve by comparing forest structure, tree stress-indicators, and associated thermal regimes between forests inside the park and forests at the current latitudinal limit of the species dieback. Yellow-cedar trees inside the park were healthy and relatively unstressed compared to trees outside the park that exhibited reduced crown fullness and increased foliar damage. Considering risk factors for mortality under future climate scenarios, our vulnerability model indicated future expected dieback occurring within park boundaries. Interviews with forest users and managers revealed strong support for increasing monitoring to inform interventions outside protected areas, improving management collaboration across land designations, and using a portfolio of interventions on actively managed lands. Study participants who perceived humans as separate from nature were more opposed to inter- ventions in protected areas. Linking social and ecological analyses, our study provides an interdisciplinary approach to identify system-specific metrics (e.g., stress indicators) that can better connect monitoring with management, and adaptation strategies for species impacted by climate change.
Located in Resources / Climate Science Documents
File text/texmacs Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests
Wildfires play a key role in the boreal forest carbon cycle(1,2), and models suggest that accelerated burning will increase boreal C emissions in the coming century (3). However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions (4). We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan bo- real forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord5 led to simulated C losses of 1.4 kg C m?2(12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m?2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends6 and future projections (7) point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions (8) that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.
Located in Resources / Climate Science Documents
File Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions
the u.s. department of agriculture (usda)-natural resources conservation service (nrcs) uses an ecological site description (esd) framework to help incorporate interactions between local soil, climate, flora, fauna, and humans into schema for land management decision-making. we demonstrate esd and digital soil mapping tools to (i) estimate potential o horizon carbon (c) stock accumulation from restoring alternative ecological states in high-elevation forests of the central appalachian Mountains in west Virginia (wV), usa, and (ii) map areas in alternative ecological states that can be targeted for restoration. this region was extensively disturbed by clear-cut harvests and related fires during the 1880s through 1930s. we combined spodic soil property maps, recently linked to historic red spruce–eastern hemlock (Picea rubens–Tsuga canadensis) forest communities, with current forest inventories to provide guidance for restoration to a historic reference state. this allowed mapping of alternative hardwood states within areas of the spodic shale uplands conifer forest (scF) ecological site, which is mapped along the regional conifer-hardwood transition of the central appalachian Mountains. Plots examined in these areas suggest that many of the spruce-hemlock dominated stands in wV converted to a hardwood state by historic disturbance have lost at least 10 cm of o horizon thickness, and possibly much more. Based on this 10 cm estimate, we calculate that at least 3.74 to 6.62 tg of c were lost from areas above 880 m elevation in wV due to historic disturbance of o horizons, and that much of these stocks and related ecosystem functions could potentially be restored within 100 yr under focused management, but more practical scenarios would likely require closer to 200 yr.
Located in Resources / Climate Science Documents
File Eocene atmospheric CO2 from the nahcolite proxy
Paleotemperature estimates from leaf fossils and fluid inclusions in halite suggest an upper limit for [CO2]atm in the EECO from the nahcolite proxy of ~1260 ppm. These data support a causal connection between ele- vated [CO2]atm and early Eocene global warmth, but at significantly lower [CO2]atm than previously thought, which suggests that ancient climates on Earth may have been more sensitive to a doubling of [CO2]atm than is currently assumed.
Located in Resources / Climate Science Documents
File The global volume and distribution of modern groundwater
Groundwater is important for energy and food security, human health and ecosystems. The time since groundwater was recharged—or groundwater age—can be important for diverse geologic processes, such as chemical weathering, ocean eutrophication and climate change. However, measured groundwater ages range from months to millions of years. The global volume and distribution of groundwater less than 50 years old—modern groundwater that is the most recently recharged and also the most vulnerable to global change—are unknown. Here we combine geochemical, geologic, hydrologic and geospatial data sets with numerical simulations of groundwater and analyse tritium ages to show that less than 6% of the groundwater in the uppermost portion of Earth’s landmass is modern. We find that the total groundwater volume in the upper 2 km of continental crust is approximately 22.6 million km3 , of which 0.1–5.0 million km3 is less than 50 years old. Although modern groundwater represents a small percentage of the total groundwater on Earth, the volume of modern groundwater is equivalent to a body of water with a depth of about 3 m spread over the continents. This water resource dwarfs all other components of the active hydrologic cycle.
Located in Resources / Climate Science Documents
File Global separation of plant transpiration from groundwater and streamflow
Current land surface models assume that groundwater, streamflow and plant transpiration are all sourced and mediated by the same well mixed water reservoir—the soil. However, recent work in Oregon1 and Mexico2 has shown evidence of ecohydrological sepa- ration, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the combined fluxes of groundwater and streamflow. These findings have not yet been widely tested. Here we use hydrogen and oxygen isotopic data (2H/1H (d2H) and 18O/16O (d18O)) from 47 globally distrib- uted sites to show that ecohydrological separation is widespread across different biomes. Precipitation, stream water and ground- water from each site plot approximately along the d2H/d18O slope of local precipitation inputs. But soil and plant xylem waters extracted from the 47 sites all plot below the local stream water and groundwater on the meteoric water line, suggesting that plants use soil water that does not itself contribute to groundwater recharge or streamflow. Our results further show that, at 80% of the sites, the precipitation that supplies groundwater recharge and streamflow is different from the water that supplies parts of soil water recharge and plant transpiration. The ubiquity of subsurface water compartmentalization found here, and the segregation of storm types relative to hydrological and ecological fluxes, may be used to improve numerical simulations of runoff generation, stream water transit time and evaporation–transpiration partitioning. Future land surface model parameterizations should be closely examined for how vegetation, groundwater recharge and streamflow are assumed to be coupled.
Located in Resources / Climate Science Documents
Announcing the January 2015 Decision Analysis for Climate Change Online Course (ALC 3196)
Have you always wanted to know how to address climate change related concerns and uncertainties using decision analysis? Do you have a small to moderate scale climate change problem you are working on and wondered if decision analysis can help you solve that problem? We have the class for you!
Located in News and Webinars
File Troff document Fact Sheet: Riparian Restoration Decision Support Tool
An innovative web-based tool - funded by the Appalachian Landscape Conservation Cooperative (LCC) and developed by researchers from the U.S. Forest Service and the University of Massachusetts - is allowing managers to rapidly identify high-priority riparian targets for restoration to make more resilient in preparation for changes in future climate. The Riparian Restoration Prioritization to Promote Climate Change Resilience (RPCCR) tool identifies vulnerable stream and riverbanks that lack tree cover and shade in coldwater stream habitats. By locating the best spots to plant trees in riparian zones, resource managers can provide shade that limits the amount of solar radiation heating the water and reduces the impacts from climate change. This well-established management strategy will benefit high-elevation, cold-water aquatic communities.
Located in Tools & Resources / Riparian Restoration Decision Support Tool
The NatureServe Climate Change Vulnerability Index can help identify plant and animal species that are particularly vulnerable to the effects of climate change.
Located in Planning In Practice / Conservation Planning Projects
Climate Wizard enables technical and non-technical audiences alike to access leading climate change information and visualize the impacts anywhere on Earth. The first generation of this web-based program allows the user to choose a state or country and both assess how climate has changed over time and to project what future changes are predicted to occur in a given area.
Located in Planning In Practice / Conservation Planning Projects