Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document CARBON CYCLE : Fertilizing change
Carbon cycle–climate feedbacks are expected to diminish the size of the terrestrial carbon sink over the next century. Model simulations suggest that nitrogen availability is likely to play a key role in mediating this response.
Located in Resources / Climate Science Documents
File PDF document Effects of grazing on grassland soil carbon: a global review
Soils of grasslands represent a large potential reservoir for storing CO2, but this potential likely depends on how grasslands are managed for large mammal grazing. Previous studies found both strong positive and negative grazing effects on soil organic carbon (SOC) but explanations for this variation are poorly developed. Expanding on previous reviews, we performed a multifactorial meta-analysis of grazer effects on SOC density on 47 independent experimen- tal contrasts from 17 studies. We explicitly tested hypotheses that grazer effects would shift from negative to positive with decreasing precipitation, increasing fineness of soil texture, transition from dominant grass species with C3 to C4 photosynthesis, and decreasing grazing intensity, after controlling for study duration and sampling depth. The six variables of soil texture, precipitation, grass type, grazing intensity, study duration, and sampling depth explained 85% of a large variation (`150 g m␣2 yr␣1) in grazing effects, and the best model included significant interactions between precipitation and soil texture (P = 0.002), grass type, and grazing intensity (P = 0.012), and study duration and soil sampling depth (P = 0.020). Specifically, an increase in mean annual precipitation of 600 mm resulted in a 24% decrease in grazer effect size on finer textured soils, while on sandy soils the same increase in precipitation pro- duced a 22% increase in grazer effect on SOC. Increasing grazing intensity increased SOC by 6–7% on C4-dominated and C4–C3 mixed grasslands, but decreased SOC by an average 18% in C3-dominated grasslands. We discovered these patterns despite a lack of studies in natural, wildlife-dominated ecosystems, and tropical grasslands. Our results, which suggest a future focus on why C3 vs. C4-dominated grasslands differ so strongly in their response of SOC to grazing, show that grazer effects on SOC are highly context-specific and imply that grazers in different regions might be managed differently to help mitigate greenhouse gas emissions. Keywords: carbon sequestration, grasslands, grazing, grazing intensity, precipitation, soil organic carbon, soil texture
Located in Resources / Climate Science Documents
File PDF document A paradigm shift in understanding and quantifying the effects of forest harvesting on floods in snow environments
A well-established precept in forest hydrology is that any reduction of forest cover will always have a progressively smaller effect on floods with increasing return period. The underlying logic in snow environments is that during the largest snowmelt events the soils and vegetation canopy have little additional storage capacity and under these conditions much of the snowmelt will be converted to runoff regardless of the amount or type of vegetation cover. Here we show how this preconceived physical understanding, reinforced by the outcomes of numerous paired watershed studies, is indefensible because it is rationalized outside the flood frequency distribution framework. We conduct a meta-analysis of postharvest data at four catchments (3–37 km2) with moderate level of harvesting (33%–40%) to demonstrate how harvesting increases the magnitude and frequency of all floods on record (19–99 years) and how such effects can increase unchecked with increasing return period as a consequence of changes to both the mean (þ11% to þ35%) and standard deviation (􏰁12% to þ19%) of the flood frequency distribution. We illustrate how forest harvesting has substantially increased the frequency of the largest floods in all study sites regardless of record length and this also runs counter to the prevailing wisdom in hydrological science. The dominant process responsible for these newly emerging insights is the increase in net radiation associated with the conversion from longwave-dominated snowmelt beneath the canopy to shortwave-dominated snowmelt in harvested areas, further amplified or mitigated by basin characteristics such as aspect distribution, elevation range, slope gradient, amount of alpine area, canopy closure, and drainage density. Investigating first order environmental controls on flood frequency distributions, a standard research method in stochastic hydrology, represents a paradigm shift in the way harvesting effects are physically explained and quantified in forest hydrology literature.
Located in Resources / Climate Science Documents
File PDF document Divergent global precipitation changes induced by natural versus anthropogenic forcing
As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry sub-tropical regions (1). The absolute magnitude and regional details of such changes, however, remain intensely debated (2,3). As is well known from El Nino studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall (4,5). Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation (6–9). In contrast, in most model projections of future greenhouse warming this gradient weakens (2,10,11). It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000–1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget (12), which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth’s surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.
Located in Resources / Climate Science Documents
File PDF document Effects of Management on Carbon Sequestration in Forest Biomass in Southeast Alaska
The Tongass National Forest (Tongass) is the largest national forest and largest area of old-growth forest in the United States. Spatial geographic informa- tion system data for the Tongass were combined with forest inventory data to estimate and map total carbon stock in the Tongass; the result was 2.8±0.5PgC,or8%of the total carbon in the forests of the conterminous USA and 0.25% of the carbon in global forest vegetation and soils. Cumulative net carbon loss from the Tongass due to management of the forest for the period 1900–95 was estimated at 6.4–17.2 Tg C. Using our spatially explicit data for carbon stock and net flux, we modeled the potential effect of five management regimes on future net carbon flux. Estimates of net carbon flux were sensitive to projections of the rate of carbon accumulation in second-growth forests and to the amount of carbon left in standing biomass after harvest. Projections of net carbon flux in the Tongass range from 0.33 Tg C annual sequestration to 2.3 Tg C annual emission for the period 1995–2095. For the period 1995–2195, net flux estimates range from 0.19 Tg C annual sequestra- tion to 1.6 Tg C annual emission. If all timber harvesting in the Tongass were halted from 1995 to 2095, the economic value of the net carbon sequestered during the 100-year hiatus, assuming $20/Mg C, would be $4 to $7 million/y (1995 US dollars). If a prohibition on logging were extended to 2195, the annual economic value of the carbon sequestered would be largely unaffected ($3 to $6 million/y). The potential annual economic value of carbon sequestration with management maxi- mizing carbon storage in the Tongass is comparable to revenue from annual timber sales historically authorized for the forest. Key words: carbon sequestration; geographic information system; climate change; forest management; Alaska.
Located in Resources / Climate Science Documents
File PDF document Conservation value of forests attacked by bark beetles: Highest number of indicator species is found in early successional stages
Heavy natural disturbance in large protected areas of former commercial forests increasingly evokes European parliaments to call for management intervention because a loss of habitats and species is feared. In contrast, natural early successional habitats have recently been recognised as important for conservation. Current knowledge in this field mostly results from studies dealing only with selected taxa. Here we analyse the success of species across 24 lineages of three kingdoms in the Bavarian Forest National Park (Germany) after 15 years of a European spruce bark beetle (Ips typographus L.) outbreak that led to rapid canopy opening. Using indicator species analysis, we found 257 species with a significant preference for open forests and 149 species with a preference for closed forests, but only 82 species with a preference for the stand conditions transitional between open and closed forests. The large number of species with a preference for open forests across lineages supports the role of this bark beetle as a keystone species for a broad array of species. The slowdown of the outbreak after 15 years in the core zone of the national park resulted in less than half of the area being affected, due to variability in stand ages and tree species mixtures. Our case study is representative of the tree species composition and size of many large protected montane areas in Central European countries and illustrates that (1) natural disturbances increase biodiversity in formerly managed forests and (2) a montane protected area spanning 10,000 ha of low range mountains is likely sufficient to allow natural disturbances without a biased loss of closed-forest species.
Located in Resources / Climate Science Documents
File PDF document Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests
Tropical montane cloud forests (TMCFs) depend on predictable, frequent, and prolonged immersion in cloud. Clearing upwind lowland forest alters surface energy budgets in ways that influence dry season cloud fields and thus the TMCF environment. Landsat and Geostationary Operational Environmental Satellite imagery show that deforested areas of Costa Rica’s Caribbean lowlands remain relatively cloud-free when forested regions have well-developed dry season cumulus cloud fields. Further, regional atmospheric simulations show that cloud base heights are higher over pasture than over tropical forest areas under reasonable dry season conditions. These results suggest that land use in tropical lowlands has serious impacts on ecosystems in adjacent mountains.
Located in Resources / Climate Science Documents
File Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America
Widespread synchronous wildfires driven by climatic variation, such as those that swept western North America during 1996, 2000, and 2002, can result in major environmental and societal impacts. Understanding relationships between continental-scale patterns of drought and modes of sea surface temperatures (SSTs) such as El Nin ̃o-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) may explain how interannual to multidecadal variability in SSTs drives fire at continental scales. We used local wildfire chronologies recon- structed from fire scars on tree rings across western North America and independent reconstructions of SST developed from tree-ring widths at other sites to examine the relationships of multicentury patterns of climate and fire synchrony. From 33,039 annually resolved fire-scar dates at 238 sites (the largest paleofire record yet assembled), we examined forest fires at regional and subconti- nental scales. Since 1550 CE, drought and forest fires covaried across the West, but in a manner contingent on SST modes. During certain phases of ENSO and PDO, fire was synchronous within broad subregions and sometimes asynchronous among those re- gions. In contrast, fires were most commonly synchronous across the West during warm phases of the AMO. ENSO and PDO were the main drivers of high-frequency variation in fire (interannual to decadal), whereas the AMO conditionally changed the strength and spatial influence of ENSO and PDO on wildfire occurrence at multidecadal scales. A current warming trend in AMO suggests that we may expect an increase in widespread, synchronous fires across the western U.S. in coming decades. Atlantic Multidecadal Oscillation 􏰅 El Nino Southern Oscillation 􏰅 fire history network 􏰅 ocean warming 􏰅 Pacific Decadal Oscillation
Located in Resources / Climate Science Documents
File PDF document Drought, disease, defoliation and death: forest pathogens as agents of past vegetation change
The temperate and boreal forests of Europe and North America have been subject to repeated pathogen (fungal disease and phytophagus insect) outbreaks over the last 100 years. Palaeoecology can, potentially, offer a long-term perspective on such disturbance episodes, providing information on their triggers, frequency and impact. Mid-Holocene declines in Tsuga and Ulmus pollen dominate the Quaternary literature on forest pathogens, yet the role of pathogens, and even the presence of pathogenic fungal diseases, during these events has yet to be established. Pathogen-focused research strategies, informed by the sequence of events documented in modern outbreaks, and undertaken at high temporal resolution using a multi-proxy approach, are required. It is argued that forest pathogens are likely to have been significant agents of past vegetation change, even in cases where climate change was the primary stress factor.
Located in Resources / Climate Science Documents
File PDF document BOTANY AND A CHANGING WORLD: INTRODUCTION TO THE SPECIAL ISSUE ON GLOBAL BIOLOGICAL CHANGE
The impacts of global change have heightened the need to understand how organisms respond to and influence these changes. Can we forecast how change at the global scale may lead to biological change? Can we identify systems, processes, and organisms that are most vulnerable to global changes? Can we use this understanding to enhance resilience to global changes? This special issue on global biological change emphasizes the integration of botanical information at different biological levels to gain perspective on the direct and indirect effects of global change. Contributions span a range of spatial scales and include both ecological and evolutionary timescales and highlight work across levels of organization, including cellular and physiological processes, individuals, populations, and ecosystems. Integrative botanical approaches to global change are critical for the eco- logical and evolutionary insights they provide and for the implications these studies have for species conservation and ecosys- tem management. Key words: community dynamics; flowering phenology; functional traits; global biological change; invasive species; land-use patterns; plant–microbial interactions; species interactions.
Located in Resources / Climate Science Documents