Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends
The significant worldwide increase in observed river runoff has been tentatively attributed to the stomatal ‘‘antitranspirant’’ response of plants to rising atmospheric CO2 [Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Nature 439: 835– 838]. However, CO2 also is a plant fertilizer. When allowing for the increase in foliage area that results from increasing atmospheric CO2 levels in a global vegetation model, we find a decrease in global runoff from 1901 to 1999. This finding highlights the importance of vegetation structure feedback on the water balance of the land surface. Therefore, the elevated atmospheric CO2 concentration does not explain the estimated increase in global runoff over the last century. In contrast, we find that changes in mean climate, as well as its variability, do contribute to the global runoff increase. Using historic land-use data, we show that land-use change plays an additional important role in controlling regional runoff values, particularly in the tropics. Land-use change has been strongest in tropical regions, and its contribution is substantially larger than that of climate change. On average, land-use change has increased global runoff by 0.08 mm/year2 and accounts for 􏱨50% of the reconstructed global runoff trend over the last century. Therefore, we emphasize the importance of land-cover change in forecasting future freshwater availability and climate.
Located in Resources / Climate Science Documents
File PDF document Effect of per-capita land use changes on Holocene forest clearance and CO2 emissions
The centerpiece of the early anthropogenic hypothesis is the claim that humans took control of greenhouse-gas trends thousands of years ago because of emissions from early agriculture (Ruddiman, 2003, 2007). A common reaction to this claim is that too few people lived thousands of years ago to have had a major effect on either land use or greenhouse-gas concentrations. Implicit in this view is the notion that per-capita land clearance has changed little for millennia, but numerous field studies have shown that early per-capita land use was large and then declined as increasing population density led to more intensive farming. Here we explore the potential impact of changing per-capita land use in recent millennia and conclude that greater clearance by early agriculturalists could have had a disproportionately large impact on CO2 emissions.
Located in Resources / Climate Science Documents
File PDF document Changes in the Asian monsoon climate during 1700 –1850 induced by preindustrial cultivation
Preindustrial changes in the Asian summer monsoon climate from the 1700s to the 1850s were estimated with an atmospheric general circulation model (AGCM) using historical global land cover/use change data reconstructed for the last 300 years. Extended cultivation resulted in a decrease in monsoon rainfall over the Indian subcontinent and southeastern China and an associated weakening of the Asian summer monsoon circulation. The precipitation decrease in India was marked and was consistent with the observational changes derived from examining the Himalayan ice cores for the concurrent period. Between the 1700s and the 1850s, the anthropogenic increases in greenhouse gases and aerosols were still minor; also, no long-term trends in natural climate variations, such as those caused by the ocean, solar activity, or volcanoes, were reported. Thus, we propose that the land cover/ use change was the major source of disturbances to the climate during that period. This report will set forward quantitative ex-amination of the actual impacts of land cover/use changes on Asian monsoons, relative to the impact of greenhouse gases and aerosols, viewed in the context of global warming on the interannual, decadal, and centennial time scales. atmospheric water balance 􏰅 climate change 􏰅 historical land-cover change 􏰅 monsoon rainfall
Located in Resources / Climate Science Documents
File PDF document Domesticated Nature: Shaping Landscapes and Ecosystems for Human Welfare
Like all species, humans have exercised their impulse to perpetuate and propagate themselves. In doing so, we have domesticated landscapes and ecosystems in ways that enhance our food supplies, reduce exposure to predators and natural dangers, and promote commerce. On average, the net benefits to humankind of domesticated nature have been positive. We have, of course, made mistakes, causing unforeseen changes in ecosystem attributes, while leaving few, if any, truly wild places on Earth. Going into the future, scientists can help humanity to domesticate nature more wisely by quantifying the tradeoffs among ecosystem services, such as how increasing the provision of one service may decrease ecosystem resilience and the provision of other services.
Located in Resources / Climate Science Documents
File PDF document A phylogenetic perspective on the distribution of plant diversity
Phylogenetic studies are revealing that major ecological niches are more conserved through evolutionary history than expected, implying that adaptations to major climate changes have not readily been accomplished in all lineages. Phylogenetic niche conservatism has important consequences for the assembly of both local communities and the regional species pools from which these are drawn. If corridors for movement are available, newly emerging environments will tend to be filled by species that filter in from areas in which the relevant adaptations have already evolved, as opposed to being filled by in situ evolution of these adaptations. Examples include intercontinental disjunctions of tropical plants, the spread of plant lineages around the Northern Hemisphere after the evolution of cold tolerance, and the radiation of northern alpine plants into the Andes. These observations highlight the role of phylogenetic knowledge and historical biogeography in explanations of global biodiversity patterns. They also have implications for the future of biodiversity.
Located in Resources / Climate Science Documents
File PDF document Adapting to a Changing Climate in the Southeast
Whether it’s change to native terrestrial habitats or sea level rise and impacts to vital coastal wetlands and marshes, we are only beginning to understand what is happening across the country, what is likely to occur in the years ahead, and how our agency will act. Indeed, of the 128 national wildlife refuges in the Southeast more than half are located along the coast. The number of days per year with peak temperatures over 90F is expected to rise significantly. By the end of this century, projections indicate much of North Carolina will have 90F plus days for one-third of the year, up from less than 30 days in that temperature zone in the 1960s and 1970s. Arkansas will see 90F days for up to 150 days a year, and NorthFlorida for nearly 6 months a year.
Located in Resources / Climate Science Documents
File PDF document Climate change and the ecologist
The evidence for rapid climate change now seems overwhelming. Global temperatures are predicted to rise by up to 4 °C by 2100, with associated alterations in precipitation patterns. Assessing the consequences for biodiversity, and how they might be mitigated, is a Grand Challenge in ecology.
Located in Resources / Climate Science Documents
File PDF document Aerosols heat up
Solid particles suspended in the atmosphere have long played second fiddle to greenhouse gases as agents of climate change. A study of atmospheric heating over the Indian Ocean could provoke a rethink.
Located in Resources / Climate Science Documents
File PDF document Do small tributaries function as refuges from floods? A test in a salmonid-dominated mountainous river
Excerpts from the text: On 8–10 August 2003, a powerful typhoon hit Hokkaido Island, Japan, accompanied with heavy rain, which allowed us to investigate the potential role of tributaries as refuges from flooding. We had just completed annual population census in four small tributaries of a river system 1–2 days before the typhoon.... Overall, our results did not support the hypothesis that many large fishes immigrate to small tributaries during floods. ... Despite the lack of evidence of mass movement, our result suggested a few immigrants from the main stem (i.e., juvenile white-spotted charr, sculpin and a few relatively large Dolly Varden). Because more than 100 small tributaries exist in the Shiisorapuchi River (Koizumi 2011), only a few individuals escaping to each tributary should accumulate to a great number enough to re-colonise main stem habitats even if fishes in the main stem were extirpated. Multiple refuges at different spatial scales should increase resistance and ⁄ or resilience of fish populations (Sedell et al. 1990; Pearsons et al. 1992). Thus, the roles of tributaries as refuges would deserve further attention
Located in Resources / Climate Science Documents
File PDF document Characteristics, distribution and geomorphic role of large woody debris in a mountain stream of the Chilean Andes
The paper presents an analysis of amounts, characteristics and morphological impact of large woody debris (LWD) in the Tres Arroyos stream, draining an old-growth forested basin (9·1 km2) of the Chilean Southern Andes. Large woody debris has been surveyed along a 1·5 km long channel section with an average slope of 0·07 and a general step–pool/cascade morphology. Specific wood storage is very high (656 –710 m3 ha−1), comparable to that recorded in old-growth forested basins in the Pacific Northwest. Half of the LWD elements were located on the active floodplain, and around two-thirds of LWD elements were found in accumula- tions. Different types of log jam were observed, some heavily altering channel morphology (log-steps and valley jams), while others just line the channel edges (bankfull bench jams). Log-steps represent approximately 22% of all steps, whereas the elevation loss due to LWD (log-steps and valley jams) results in 27% loss of the total stream potential energy. About 1600 m3 of sediment is stored in the main channel behind LWD structures, corresponding to approximately 150% of the annual sediment yield. Keywords: large woody debris; channel morphology; valley jams; log-steps; Andes; stream sediment: sediment traps
Located in Resources / Climate Science Documents