Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File Climate Change Adaptation Planning
Planning efforts completed or underway by Federal and State agencies and Tribes.
Located in Resources / General Resources Holdings / AppLCC Development and Operations Planning
File PDF document Climate change and disruptions to global fire activity
Future disruptions to fire activity will threaten ecosystems and human well-being throughout the world, yet there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From the ensemble results, we identify areas of consensus for increases or decreases in fire activity, as well as areas where GCMs disagree. Although certain biomes are sensitive to constraints on biomass productivity and others to atmospheric conditions promoting combustion, substantial and rapid shifts are projected for future fire activity across vast portions of the globe. In the near term, the most consistent increases in fire activity occur in biomes with already somewhat warm climates; decreases are less pronounced and concentrated primarily in a few tropical and subtropical biomes. However, models do not agree on the direction of near- term changes across more than 50% of terrestrial lands, highlighting major uncertainties in the next few decades. By the end of the century, the magnitude and the agreement in direction of change are projected to increase substantially. Most far-term model agreement on increasing fire probabilities (;62%) occurs at mid- to high-latitudes, while agreement on decreasing probabilities (;20%) is mainly in the tropics. Although our global models demonstrate that long-term environmental norms are very successful at capturing chronic fire probability patterns, future work is necessary to assess how much more explanatory power would be added through interannual variation in climate variables. This study provides a first examination of global disruptions to fire activity using an empirically based statistical framework and a multi-model ensemble of GCM projections, an important step toward assessing fire-related vulnerabilities to humans and the ecosystems upon which they depend. Key words: climatic constraints; ensemble model uncertainty; flammability; global climate models (GCM); GCM agreement; global fire probabilities; resources to burn; spatial statistical models; species distribution models.
Located in Resources / Climate Science Documents
File PDF document Climate change and the ecologist
The evidence for rapid climate change now seems overwhelming. Global temperatures are predicted to rise by up to 4 °C by 2100, with associated alterations in precipitation patterns. Assessing the consequences for biodiversity, and how they might be mitigated, is a Grand Challenge in ecology.
Located in Resources / Climate Science Documents
File PDF document Climate change and the invasion of California by grasses
Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait differences between groups allows us to predict changes in the exotic-native balance under climate change scenarios. Exotic species are more likely to be annual, taller, with larger leaves, larger seeds, higher specific leaf area, and higher leaf N percentage than native species. Across the state, all these traits are associated with regions with higher temperature. Therefore, we predict that increasing temperatures will favor trait states that tend to be possessed by exotic species, increasing the dominance of exotic species. This prediction is corroborated by the current distribution of exotic species richness relative to native richness in California; warmer areas contain higher proportions of exotic species. This pattern was very well captured by a simple model that predicts invasion severity given only the trait–climate relationship for native species and trait differences between native and exotic species. This study provides some of the first evidence for an important interaction between climate change and species invasions across very broad geographic and taxonomic scales.
Located in Resources / Climate Science Documents
File PDF document Climate change and the world economy: short-run determinants of atmospheric CO2
Volcanic eruptions, the El Nin ̃ o Southern oscillation (ENSO), world population, and the world economy are the four variables usually discussed as influencing the short-run changes in CO2 atmospheric levels through their influence on CO2 emissions and sinks. Using proper procedures of detrending, we do not find any observable relation between the short-term growth of world population and the increase of CO2 concentrations. Results suggest that the link between volcanic eruptions, ENSO activity, and CO2 concentrations may be confounded by the coincidence of the Pinatubo eruption with the breakdown of the economies of the Soviet Bloc in the early 1990s. Changes in world GDP (WGDP) have a significant effect on CO2 concentrations, so that years of above-trend WGDP are years of greater rise of CO2 concentrations. Measuring WGDP in constant US dollars of 2000, for each trillion WGDP deviates from trend, the atmospheric CO2 concentration has deviated from trend, in the same direction, about half a part per million.
Located in Resources / Climate Science Documents
File PDF document Climate change and tropical biodiversity: a new focus
Considerable efforts are focused on the consequences of climate change for tropical rainforests. However, potentially the greatest threats to tropical biodiversity (synergistic interactions between climatic changes and human land use) remain understudied. Key concerns are that aridification could increase the accessibility of previously non-arable or remote lands, elevate fire impacts and exacerbate ecological effects of habitat disturbance. The growing climatic change literature often fails to appreciate that, in coming decades, climate–land use interac- tions might be at least as important as abiotic changes per se for the fate of tropical biodiversity. In this review, we argue that protected area expansion along key ecological gradients, regulation of human-lit fires, strategic forest–carbon financing and re-evaluations of agricultural and biofuel subsidies could ameliorate some of these synergistic threats.
Located in Resources / Climate Science Documents
File PDF document Climate Change Challenges and Opportunities for Global Health
Editorial: Journal of the American Medical Association. Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. To provide new US-based temperature projections from downscaledclimate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. We searched PubMed from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average with air temperature data taken from the National Oceanic and Atmospheric Administration National Climate Data Center. By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; and respiratory disorders, including those exacerbated by fine particulate pollutants, such as asthma and allergic disorders; infectious diseases, including vectorborne diseases and water-borne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic co-benefits could be associated with reductions in fossil fuel combustion. For example, the cost of greenhouse gas emission policies may yield net economic benefit, with health benefits from air quality improvements potentially offsetting the cost of US carbon policies. Evidence over the past 20 years indicates that climate change can be associated with adverse health outcomes. Health care professionals have an important role in understanding and communicating the related potential health concerns and the cobenefits from reducing greenhouse gas emissions.
Located in Resources / Climate Science Documents
File PDF document Climate Change Conversations
THE THOUSANDS OF PRESENTATIONS AT NEXT WEEK’S MEETING OF THE AMERICAN CHEMICAL SOCIETY (ACS) in New Orleans exemplify one of the many ways scientists converse among themselves about the most recent advances in science. Science and technology continue to reshape the world we live in, and appreciating how these changes, both intended and unintended, come about is a necessity for all citizens in a democratic society. Scientists have a responsibility to help their fellow citizens understand what science and technology can and cannot do for them
Located in Resources / Climate Science Documents
File PDF document Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes
Thermal regimes in rivers and streams are fundamentally important to aquatic ecosystems and are expected to change in response to climate forcing as the Earth’s temperature warms. Description and attribution of stream temperature changes are key to understanding how these ecosystems may be affected by climate change, but difficult given the rarity of long-term monitoring data. We assembled 18 temperature time-series from sites on regulated and unregulated streams in the northwest U.S. to describe historical trends from 1980–2009 and assess thermal consistency between these stream categories. Statistically significant temperature trends were detected across seven sites on unregulated streams during all seasons of the year, with a cooling trend apparent during the spring and warming trends during the summer, fall, and winter. The amount of warming more than compensated for spring cooling to cause a net temperature increase, and rates of warming were highest during the summer (raw trend = 0.17°C/decade; reconstructed trend = 0.22°C/decade). Air temperature was the dominant factor explaining long-term stream temperature trends (82–94% of trends) and inter-annual variability (48–86% of variability), except during the summer when discharge accounted for approximately half (52%) of the inter-annual variation in stream temperatures. Seasonal temperature trends at eleven sites on regulated streams were qualitatively similar to those at unregulated sites if two sites managed to reduce summer and fall temperatures were excluded from the analysis. However, these trends were never statistically significant due to greater variation among sites that resulted from local water management policies and effects of upstream reservoirs. Despite serious deficiencies in the stream temperature monitoring record, our results suggest many streams in the northwest U.S. are exhibiting a regionally coherent response to climate forcing. More extensive monitoring efforts are needed as are techniques for short-term sensitivity analysis and reconstructing historical temperature trends so that spatial and temporal patterns of warming can be better understood. Continuation of warming trends this century will increasingly stress important regional salmon and trout resources and hamper efforts to recover these species, so comprehensive vulnerability assessments are needed to provide strategic frameworks for prioritizing conservation efforts.
Located in Resources / Climate Science Documents
File PDF document Climate Change Hot Spots Mapped Across the United States
Taking some of the fuzziness out of climate models is revealing the uneven U.S. impact of future global warming; the most severely affected region may be emerging already
Located in Resources / Climate Science Documents