Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Landscape Partnership Resources Library

Landscape Partnership Resources Library

Distribution and characterization of in‐channel large wood in relation to geomorphic patterns on a low‐gradient river

A 177 river km georeferenced aerial survey of in‐channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low‐gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine‐grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LW frequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low‐gradient, dam‐regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests

Read More…

Characteristics, distribution and geomorphic role of large woody debris in a mountain stream of the Chilean Andes

The paper presents an analysis of amounts, characteristics and morphological impact of large woody debris (LWD) in the Tres Arroyos stream, draining an old-growth forested basin (9·1 km2) of the Chilean Southern Andes. Large woody debris has been surveyed along a 1·5 km long channel section with an average slope of 0·07 and a general step–pool/cascade morphology. Specific wood storage is very high (656 –710 m3 ha−1), comparable to that recorded in old-growth forested basins in the Pacific Northwest. Half of the LWD elements were located on the active floodplain, and around two-thirds of LWD elements were found in accumula- tions. Different types of log jam were observed, some heavily altering channel morphology (log-steps and valley jams), while others just line the channel edges (bankfull bench jams). Log-steps represent approximately 22% of all steps, whereas the elevation loss due to LWD (log-steps and valley jams) results in 27% loss of the total stream potential energy. About 1600 m3 of sediment is stored in the main channel behind LWD structures, corresponding to approximately 150% of the annual sediment yield. Keywords: large woody debris; channel morphology; valley jams; log-steps; Andes; stream sediment: sediment traps

Read More…

Do small tributaries function as refuges from floods? A test in a salmonid-dominated mountainous river

Excerpts from the text: On 8–10 August 2003, a powerful typhoon hit Hokkaido Island, Japan, accompanied with heavy rain, which allowed us to investigate the potential role of tributaries as refuges from flooding. We had just completed annual population census in four small tributaries of a river system 1–2 days before the typhoon.... Overall, our results did not support the hypothesis that many large fishes immigrate to small tributaries during floods. ... Despite the lack of evidence of mass movement, our result suggested a few immigrants from the main stem (i.e., juvenile white-spotted charr, sculpin and a few relatively large Dolly Varden). Because more than 100 small tributaries exist in the Shiisorapuchi River (Koizumi 2011), only a few individuals escaping to each tributary should accumulate to a great number enough to re-colonise main stem habitats even if fishes in the main stem were extirpated. Multiple refuges at different spatial scales should increase resistance and ⁄ or resilience of fish populations (Sedell et al. 1990; Pearsons et al. 1992). Thus, the roles of tributaries as refuges would deserve further attention

Read More…

Aerosols heat up

Solid particles suspended in the atmosphere have long played second fiddle to greenhouse gases as agents of climate change. A study of atmospheric heating over the Indian Ocean could provoke a rethink.

Read More…

Climate change and the ecologist

The evidence for rapid climate change now seems overwhelming. Global temperatures are predicted to rise by up to 4 °C by 2100, with associated alterations in precipitation patterns. Assessing the consequences for biodiversity, and how they might be mitigated, is a Grand Challenge in ecology.

Read More…

Adapting to a Changing Climate in the Southeast

Whether it’s change to native terrestrial habitats or sea level rise and impacts to vital coastal wetlands and marshes, we are only beginning to understand what is happening across the country, what is likely to occur in the years ahead, and how our agency will act. Indeed, of the 128 national wildlife refuges in the Southeast more than half are located along the coast. The number of days per year with peak temperatures over 90F is expected to rise significantly. By the end of this century, projections indicate much of North Carolina will have 90F plus days for one-third of the year, up from less than 30 days in that temperature zone in the 1960s and 1970s. Arkansas will see 90F days for up to 150 days a year, and NorthFlorida for nearly 6 months a year.

Read More…

A phylogenetic perspective on the distribution of plant diversity

Phylogenetic studies are revealing that major ecological niches are more conserved through evolutionary history than expected, implying that adaptations to major climate changes have not readily been accomplished in all lineages. Phylogenetic niche conservatism has important consequences for the assembly of both local communities and the regional species pools from which these are drawn. If corridors for movement are available, newly emerging environments will tend to be filled by species that filter in from areas in which the relevant adaptations have already evolved, as opposed to being filled by in situ evolution of these adaptations. Examples include intercontinental disjunctions of tropical plants, the spread of plant lineages around the Northern Hemisphere after the evolution of cold tolerance, and the radiation of northern alpine plants into the Andes. These observations highlight the role of phylogenetic knowledge and historical biogeography in explanations of global biodiversity patterns. They also have implications for the future of biodiversity.

Read More…

Domesticated Nature: Shaping Landscapes and Ecosystems for Human Welfare

Like all species, humans have exercised their impulse to perpetuate and propagate themselves. In doing so, we have domesticated landscapes and ecosystems in ways that enhance our food supplies, reduce exposure to predators and natural dangers, and promote commerce. On average, the net benefits to humankind of domesticated nature have been positive. We have, of course, made mistakes, causing unforeseen changes in ecosystem attributes, while leaving few, if any, truly wild places on Earth. Going into the future, scientists can help humanity to domesticate nature more wisely by quantifying the tradeoffs among ecosystem services, such as how increasing the provision of one service may decrease ecosystem resilience and the provision of other services.

Read More…

Changes in the Asian monsoon climate during 1700 –1850 induced by preindustrial cultivation

Preindustrial changes in the Asian summer monsoon climate from the 1700s to the 1850s were estimated with an atmospheric general circulation model (AGCM) using historical global land cover/use change data reconstructed for the last 300 years. Extended cultivation resulted in a decrease in monsoon rainfall over the Indian subcontinent and southeastern China and an associated weakening of the Asian summer monsoon circulation. The precipitation decrease in India was marked and was consistent with the observational changes derived from examining the Himalayan ice cores for the concurrent period. Between the 1700s and the 1850s, the anthropogenic increases in greenhouse gases and aerosols were still minor; also, no long-term trends in natural climate variations, such as those caused by the ocean, solar activity, or volcanoes, were reported. Thus, we propose that the land cover/ use change was the major source of disturbances to the climate during that period. This report will set forward quantitative ex-amination of the actual impacts of land cover/use changes on Asian monsoons, relative to the impact of greenhouse gases and aerosols, viewed in the context of global warming on the interannual, decadal, and centennial time scales. atmospheric water balance 􏰅 climate change 􏰅 historical land-cover change 􏰅 monsoon rainfall

Read More…

Effect of per-capita land use changes on Holocene forest clearance and CO2 emissions

The centerpiece of the early anthropogenic hypothesis is the claim that humans took control of greenhouse-gas trends thousands of years ago because of emissions from early agriculture (Ruddiman, 2003, 2007). A common reaction to this claim is that too few people lived thousands of years ago to have had a major effect on either land use or greenhouse-gas concentrations. Implicit in this view is the notion that per-capita land clearance has changed little for millennia, but numerous field studies have shown that early per-capita land use was large and then declined as increasing population density led to more intensive farming. Here we explore the potential impact of changing per-capita land use in recent millennia and conclude that greater clearance by early agriculturalists could have had a disproportionately large impact on CO2 emissions.

Read More…

Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends

The significant worldwide increase in observed river runoff has been tentatively attributed to the stomatal ‘‘antitranspirant’’ response of plants to rising atmospheric CO2 [Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Nature 439: 835– 838]. However, CO2 also is a plant fertilizer. When allowing for the increase in foliage area that results from increasing atmospheric CO2 levels in a global vegetation model, we find a decrease in global runoff from 1901 to 1999. This finding highlights the importance of vegetation structure feedback on the water balance of the land surface. Therefore, the elevated atmospheric CO2 concentration does not explain the estimated increase in global runoff over the last century. In contrast, we find that changes in mean climate, as well as its variability, do contribute to the global runoff increase. Using historic land-use data, we show that land-use change plays an additional important role in controlling regional runoff values, particularly in the tropics. Land-use change has been strongest in tropical regions, and its contribution is substantially larger than that of climate change. On average, land-use change has increased global runoff by 0.08 mm/year2 and accounts for 􏱨50% of the reconstructed global runoff trend over the last century. Therefore, we emphasize the importance of land-cover change in forecasting future freshwater availability and climate.

Read More…

A long-term association between global temperature and biodiversity, origination and extinction in the fossil record

We analysed the fossil record for the last 520 Myr against estimates of low latitude sea surface temperature for the same period. We found that global biodiversity (the richness of families and genera) is related to temperature and has been relatively low during warm ‘greenhouse’ phases, while during the same phases extinction and origination rates of taxonomic lineages have been relatively high. These findings are consistent for terrestrial and marine environments and are robust to a number of alternative assumptions and potential biases. Our results provide the first clear evidence that global climate may explain substantial variation in the fossil record in a simple and consistent manner. Our findings may have implications for extinction and biodiversity change under future climate warming.

Read More…

Another reason for concern: regional and global impacts on ecosystems for different levels of climate change

Between 1􏲒C and 2􏲒C increases in global mean temperatures most species, ecosystems and landscapes will be impacted and adaptive capacity will become limited. With the already ongoing high rate of climate change, the decline in biodiversity will therefore accelerate and simultaneously many ecosystem services will become less abundant.

Read More…

Non-equilibrium succession dynamics indicate continued northern migration of lodgepole pine

This study provides evidence of range expansion under current climatic conditions of an indigenous species with strong ecosystem effects. Surveys of stands along the northern distribution limit of lodgepole pine (Pinus contorta var. latifolia) in central Yukon Territory, Canada showed consistent increases in pine dominance following fire. These patterns differed strongly from those observed at sites where pine has been present for several thousand years. Differences in species thinning rates are unlikely to account for the observed increases in pine dominance. Rates of pine regeneration at its range limits were equivalent to those of spruce, indicating a capacity for rapid local population expansion. The study also found no evidence of strong climatic limitation of pine population growth at the northern distribution limit. We interpret these data as evidence of current pine expansion at its range limits and conclude that the northern distribution of lodgepole pine is not in equilibrium with current climate. This study has implications for our ability to predict vegetation response to climate change when populations may lag in their response to climate.

Read More…

Early warning signals of extinction in deteriorating environments

During the decline to extinction, animal populations may present dynamical phenomena not exhibited by robust populations (1,2). Some of these phenomena, such as the scaling of demographic variance, are related to small size (3–6) whereas others result from density- dependent nonlinearities (7). Although understanding the causes of population extinction has been a central problem in theoretical biology for decades (8), the ability to anticipate extinction has remained elusive (9). Here we argue that the causes of a population’s decline are central to the predictability of its extinction. Specifically, environmental degradation may cause a tipping point in population dynamics, corresponding to a bifurcation in the underlying population growth equations, beyond which decline to extinction is almost certain. In such cases, imminent extinction will be signalled by critical slowing down (CSD) critical slowing down

Read More…

Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?

Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production—or p × g—through a time-independent factor of 9.7 ± 0.3 mW per inflation-adjusted 1990 US dollar. This important constraint, and the fact that f and c have historically varied rather slowly, points towards substantially narrowed visions of future emissions scenarios for implementation in GCMs.

Read More…

Climatic extremes improve predictions of spatial patterns of tree species

Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (􏱤20% in adjusted D2, 􏱤8% and 􏱤3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

Read More…

A Large-Scale Deforestation Experiment: Effects of Patch Area and Isolation on Amazon Birds

As compared with extensive contiguous areas, small isolated habitat patches lack many species. Some species disappear after isolation; others are rarely found in any small patch, regardless of isolation. We used a 13-year data set of bird captures from a large landscape-manipulation experiment in a Brazilian Amazon forest to model the extinction-colonization dynamics of 55 species and tested basic predictions of island biogeography and metapopulation theory. From our models, we derived two metrics of species vulnerability to changes in isolation and patch area. We found a strong effect of area and a variable effect of isolation on the predicted patch occupancy by birds.

Read More…

Can Plants Adapt? New Questions in Climate Change Research

As it becomes increasingly apparent that human activities are partly responsible for global warming, the focus of climate change research is shifting from the churning out of assessments to the pursuit of science that can test the robustness of existing models. The questions now being addressed are becoming more challenging:The questions now being addressed are becoming more challenging: Can water-use efficiency of plants keep up with rising temperatures? Will we see a greening period for some decades, even a century, before facing a rapid browndown as threshold temperatures are reached? Or could the thresholds be reached much sooner because of interactions of biophysical processes? Is the carbon storage issue missing the point?

Read More…

Beneficial Biofuels—The Food, Energy, and Environment Trilemma

Exploiting multiple feedstocks, under new policies and accounting rules, to balance biofuel production, food security, and greenhouse-gas reduction.

Read More…