Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Landscape Partnership Resources Library

Landscape Partnership Resources Library

Three new darter species of the Etheostoma percnurum species complex (Percidae, subgenus Catonotus) from the Tennessee and Cumberland River Drainages

Three new darter species of the Etheostoma percnurum species complex (Percidae, subgenus Catonotus) from the Tennessee and Cumberland River Drainages

The federally endangered Duskytail Darter, Etheostoma percnurum Jenkins, is known from only six highly disjunct populations in the Tennessee and Cumberland river drainages of Kentucky, Tennessee, and Virginia. Only four are extant. Variation in morphology including meristics, morphometrics, and pigmentation was examined among the four extant populations and limited specimens from the two extirpated populations (Abrams Creek and South Fork Holston River). Analyses of these data found each of the extant populations is morphologically diagnosable. The few specimens avail- able from Abrams Creek and South Fork Holston River prevented thorough assessment of variation, and these were grouped with their closest geographic counterparts, Citico Creek, and Little River, respectively. Three new morphologi- cally diagnosable species are described: E. sitikuense, the Citico Darter, from Citico Creek, Abrams Creek, and Tellico River (Tennessee River system); E. marmorpinnum, the Marbled Darter, from the Little River and South Fork Holston River (Tennessee River system); and E. lemniscatum, the Tuxedo Darter, from the Big South Fork (Cumberland River system). Each species warrants federal protection as an endangered species.

Read More…

Toward rigorous use of expert knowledge in ecological research

Toward rigorous use of expert knowledge in ecological research

Practicing ecologists who excel at their work (‘‘experts’’) hold a wealth of knowledge. This knowledge offers a wide range of opportunities for application in ecological research and natural resource decision-making. While experts are often consulted ad-hoc, their contributions are not widely acknowledged. These informal applications of expert knowledge lead to concerns about a lack of transparency and repeatability, causing distrust of this knowledge source in the scientific community. Here, we address these concerns with an exploration of the diversity of expert knowledge and of rigorous methods in its use. The effective use of expert knowledge hinges on an awareness of the spectrum of experts and their expertise, which varies by breadth of perspective and critical assessment. Also, experts express their knowledge in different forms depending on the degree of contextualization with other information. Careful matching of experts to application is therefore essential and has to go beyond a simple fitting of the expert to the knowledge domain. The standards for the collection and use of expert knowledge should be as rigorous as for empirical data. This involves knowing when it is appropriate to use expert knowledge and how to identify and select suitable experts. Further, it requires a careful plan for the collection, analysis and validation of the knowledge. The knowledge held by expert practitioners is too valuable to be ignored. But only when thorough methods are applied, can the application of expert knowledge be as valid as the use of empirical data. The responsibility for the effective and rigorous use of expert knowledge lies with the researchers.

Read More…

Six Common Mistakes in Conservation Priority Setting

Six Common Mistakes in Conservation Priority Setting

A vast number of prioritization schemes have been developed to help conservation navigate tough decisions about the allocation of finite resources. However, the application of quantitative approaches to setting priorities in conservation frequently includes mistakes that can undermine their authors’ intention to be more rigorous and scientific in the way priorities are established and resources allocated. Drawing on well-established principles of decision science, we highlight 6 mistakes commonly associated with setting priorities for conservation: not acknowledging conservation plans are prioritizations; trying to solve an ill- defined problem; not prioritizing actions; arbitrariness; hidden value judgments; and not acknowledging risk of failure. We explain these mistakes and offer a path to help conservation planners avoid making the same mistakes in future prioritizations.

Read More…

Conservation in the face of climate change: The roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty

Conservation in the face of climate change: The roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty

The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA.

Read More…

Plan for the Population Restoration and Conservation of Imperiled Freshwater Mollusks of the Cumberland Region

Plan for the Population Restoration and Conservation of Imperiled Freshwater Mollusks of the Cumberland Region

The goal of this Plan is to provide a framework for the restoration of freshwater mollusk resources and their ecological functions to appropriate reaches of the Cumberlandian Region through the reintroduction, augmentation (R/A) and controlled propagation of priority mollusks. The Plan prioritizes propagation and R/A activities for Region mollusks and provides guidelines for resource managers and recovery partners. The Plan is not a legal document and is not intended to replace or supersede published recovery plans for listed mollusks.

Read More…

Notes from 06-12-2015 Connecticut River Pilot Core Team Meeting

Summary of discussion and outcomes, including maps used to facilitate discussion during the meeting.

Read More…

UTRB Imperiled Aquatic Species Conservation Strategy Presentaion - Schulz 2015

Powerpoint presentation of an overiew of the Imperiled Aquatic Species Strategy for the Upper Tennessee River Basin presented by Cindy Schulz on January 30, 2015.

Read More…

Notes/Summary from May 1, 2015 Core Team Meeting

Notes/Summary from May 1, 2015 Core Team Meeting

Read More…

Forecasting environmental change: modeling thermal refugia and brook trout abundance

Forecasting environmental change: modeling thermal refugia and brook trout abundance by Dr. Than Hitt

Read More…

Presentation: Review and Lessons Learned

Slides to facilitate review meeting for the Connecticut River Pilot LCD

Read More…

Connecticut River Pilot Comments and Options

Major Comments on Connecticut River Watershed Conservation Design and Potential Options to Address Them

Read More…

Marxan Training Overall Agenda PDF

PDF of the Agenda for Day 1 and Day 2 of Marxan training.

Read More…

Marxan Training Overall Agenda PDF

PDF of the Agenda for Day 1 and Day 2 of Marxan training.

Read More…

Presentation: DSL Package Documentation, Abstracts

Powerpoint presentation slides reviewing spatial data layers and tables associated with the Connecticut River Landscape Conservation Design.

Read More…

Decision Documentation (updated 04-10-2015)

Mid-depth summary of decisions made throughout the full pilot process

Read More…

Hydrologic Units within the Tennessee River Basin

Unit name and total area (square miles) for 2, 4, 6, and 8 digit hydrologic units within the Tennessee River System.

Read More…

Document: Summary of January Core Team Meeting

Notes and summary of presentations and discussions at the January Core Team meeting.

Read More…

National Conservation Training Center Training Announcement: Decision Analysis for Climate Change - ALC3196

National Conservation Training Center Training Announcement: Decision Analysis for Climate Change - ALC3196

Natural resource managers are increasingly tasked with understanding climate change impacts and using this knowledge in making decisions. Yet the uncertainty inherent in evaluating climate impacts often impedes action. This 10‐ week online course provides participants with skills to address climate change impacts in making decisions about natural resource management.

Read More…

Effects of Flow Regulation on Shallow-Water Habitat Dynamics and Floodplain Connectivity

Our study examined the effects of flow regulation on the spatiotemporal availability of shallow habitat patches with slow current velocity (SSCV patches) and floodplain inundation in the unregulated Yellowstone River and the regulated Missouri River in Montana and North Dakota. We mapped representative sites and used hydraulic models and hydrograph data to describe the frequency and extent of floodplain inundation and the availability of SSCV habitat over time during different water years. In the Yellowstone River the distribution, location, and size of SSCV patches varied but followed an annual pattern that was tied to the snowmelt runoff hydrograph. There was less variation in patch distribution in the Missouri River, and the pattern of habitat availability was influenced by flow regulation. Regulated flows and their effects on channel mor- phology and patterns of vegetation establishment resulted in 3.0–3.5 times less area of inundated woody vegetation during normal and dry years in the Missouri River compared with the Yellow- stone River. The differences we observed in SSCV patch dynamics between rivers may have implications for fish populations and community structure through affecting the survival of early life stages. At a larger scale, the smaller area of vegetation inundated in the Missouri River suggests that nutrient cycling and the ecological benefits associated with a moving littoral zone are reduced by the altered flow and sediment regime in that river. Accurate assessments of the effects of flow alteration and successful efforts to restore riverine ecosystems will require consideration of physical and biotic processes that operate at multiple spatial and temporal scales.

Read More…

A LIDAR‐DERIVED EVALUATION OF WATERSHED‐SCALE LARGE WOODY DEBRIS SOURCES AND RECRUITMENT MECHANISMS: COASTAL MAINE, USA

In‐channel large woody debris (LWD) promotes quality aquatic habitat through sediment sorting, pool scouring and in‐stream nutrient retention and transport. LWD recruitment occurs by numerous ecological and geomorphic mechanisms including channel migration, mass wasting and natural tree fall, yet LWD sourcing on the watershed scale remains poorly constrained. We developed a rapid and spatially extensive method for using light detection and ranging data to do the following: (i) estimate tree height and recruitable tree abundance throughout a watershed; (ii) determine the likelihood for the stream to recruit channel‐spanning trees at reach scales and assess whether mass wasting or channel migration is a dominant recruitment mechanism; and (iii) understand the contemporary and future distribution of LWD at a watershed scale. We utilized this method on the 78‐km‐long Narraguagus River in coastal Maine and found that potential channel‐spanning LWD composes approximately 6% of the valley area over the course of the river and is concentrated in spatially discrete reaches along the stream, with 5 km of the river valley accounting for 50% of the total potential LWD found in the system. We also determined that 83% of all potential LWD is located on valley sides, as opposed to 17% on floodplain and terrace surfaces. Approximately 3% of channel‐spanning vegetation along the river is located within one channel width of the stream. By examining topographic and morphologic variables (valley width, channel sinuosity, valley‐ side slope) over the length of the stream, we evaluated the dominant recruitment processes along the river and often found a spatial disconnect between the location of potential channel‐spanning LWD and recruitment mechanisms, which likely explains the low levels of LWD currently found in the system. This rapid method for identification of LWD sources is extendable to other basins and may prove valuable in locating future restoration projects aimed at increasing habitat quality through wood additions. key words: large woody debris; lidar; river restoration; habitat

Read More…