Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Landscape Partnership Resources Library

Landscape Partnership Resources Library

Divergent phenological response to hydroclimate variability in forested mountain watersheds

Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins’ Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change.

Read More…

DATA MINING TO ESTIMATE BROILER MORTALITY WHEN EXPOSED TO HEAT WAVE

Heat waves usually result in losses of animal production since they are exposed to thermal stress inducing an increase in mortality and consequent economical losses. Animal science and meteorological databases from the last years contain enough data in the poultry production business to allow the modeling of mortality losses due to heat wave incidence. This research analyzes a database of broiler production associated to climatic data, using data mining techniques such as attribute selection and data classification (decision tree) to model the impact of heat wave incidence on broiler mortality. The temperature and humidity index (THI) was used for screening environmental data. The data mining techniques allowed the development of three comprehensible models for estimating specifically high mortality during broiler production. Two models yielded a classification accuracy of 89.3% by using Principal Component Analysis (PCA) and Wrapper feature selection approaches. Both models obtained a class precision of 0.83 for classifying high mortality. When the feature selection was made by the domain experts, the model accuracy reached 85.7%, while the class precision of high mortality was 0.76. Meteorological data and the calculated THI from meteorological stations were helpful to select the range of harmful environmental conditions for broilers 29 and 42 days old. The data mining techniques were useful for building animal production models.

Read More…

Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010–2012

Background: Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 °C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat stress indices (HSIs) are generally based on temperature and humidity and provide a relative measure of discomfort which can be used to predict increased risk of on-farm dairy cow mortality. In what follows, the heat stress distribution was described over space and presented with maps. Similarly, on-farm mortality was described and mapped. The goal of this study was to demonstrate that heat waves and related HSI increases during 2010–2012 were associated with increased on-farm dairy cow mortality in Southern Ontario. Mortality records and farm locations for all farms registered in the CanWest Dairy Herd Improvement Program in Southern Ontario were retrieved for 3 heat waves and 6 three-day control periods from 2010 to 2012. A random sample of controls (2:1) was taken from the data set to create a risk-based hybrid design. On-farm heat stress was estimated using data from 37 weather stations and subsequently interpolated across Southern Ontario by geostatistical kriging. A Poisson regression model was applied to assess the on-farm mortality in relation to varying levels of the HSI. Results: For every one unit increase in HSI the on-farm mortality rate across Southern Ontario increases by 1.03 times (CI95% (IRR) = (1.025,1.035); p = ≤ 0.001). With a typical 8.6 unit increase in HSI from a control period to a heat wave, mortality rates are predicted to increase by 1.27 times. Conclusions: Southern Ontario was affected by heat waves, as demonstrated by high levels of heat stress and increased on-farm mortality. Farmers should be aware of these risks, and informed of appropriate methods to mitigate such risks.

Read More…

Coupled catastrophes: sudden shifts cascade and hop among interdependent systems

From the Introduction: Sudden changes propagating among coupled systems pose a significant scientific challenge in many disciplines, yet we lack an adequate mathematical understanding of how local sudden changes spread [1]. The Earth’s biosphere, for example, appears to be approaching several planetary-scale sudden changes triggered by human activity, including species extinction, desertification and lake eutrophication, which spread from one spatial patch to another [1]. That spatial spread not only poses dangers but also opportunities for detecting early warning signs [2–4]. Socioeconomic systems have examples, too: booms and busts in business cycles in different economies appear to be synchronizing because of trade, financial and other linkages [5–8]. Poverty traps at multiple scales seem to be coupled [9]. Abrupt declines in an asset price can trigger sharp declines in confidence and fire sales of other assets, as occurred in the 2007–2008 global financial crisis [10]. Protests and social uprisings appear to spread contagiously among countries, with one protest seeming to inspire others via news and social media [11,12].

Read More…

Asynchronous Online Foresight Panels: The Case of Wildfire Management

Framing the wildfire situation as a social trap emerged early in the Round 1 discussion and this topic was deemed important enough to merit its own discussion thread.

Read More…

Ecosystem services: Foundations, opportunities, and challenges for the forest products sector

From the text: A social trap (7) is created when economic markets cannot efficiently or equitably deal with common pool resources (Hardin, 1968), which is often the case with ecosystem services.

Read More…

The Historical Dynamics of Social–Ecological Traps

Environmental degradation is a typical unintended outcome of collective human behavior. Hardin’s metaphor of the ‘‘tragedy of the commons’’ has become a conceived wisdom that captures the social dynamics leading to environmental degradation. Recently, ‘‘traps’’ has gained currency as an alternative concept to explain the rigidity of social and ecological processes that produce environmental degradation and livelihood impoverishment. The trap metaphor is, however, a great deal more complex compared to Hardin’s insight. This paper takes stock of studies using the trap metaphor. It argues that the concept includes time and history in the analysis, but only as background conditions and not as a factor of causality. From a historical–sociological perspective this is remarkable since social–ecological traps are clearly path-dependent processes, which are causally produced through a conjunction of events. To prove this point the paper conceptualizes social–ecological traps as a process instead of a condition, and systematically compares history and timing in one classic and three recent studies of social– ecological traps. Based on this comparison it concludes that conjunction of social and environmental events contributes profoundly to the production of trap processes. The paper further discusses the implications of this conclusion for policy intervention and outlines how future research might generalize insights from historical–sociological studies of traps.

Read More…

A SOCIAL TRAP ANALYSIS OF THE LOS ANGELES STORM DRAIN SYSTEM: A RATIONALE FOR INTERVENTIONS

The principles of analyzing social traps can be used to devise intervention strategies for the problems of toxic and solid waste dumping into the Los Angeles storm water drain system. Both problems readily fit into the social trap model. Intervention strategies center on 1) bringing long-term negative consequences to bear on behavioral choices of offenders, 2) increasing short-term positive consequences for correct behaviors, 3) decreasing short-term negative consequences that prevent correct behaviors, 4) increasing short-term negative consequences for environmentally destructive behaviors, 5) decreasing short-term positive consequences that support inappropriate behaviors, and 6) educating the public on the long-term positive consequences of appropriate behaviors.

Read More…

Social Traps

A new area of study is the field that some of us are beginning to call social traps. The term refers to situations in society that contain traps formally like a fish trap, where men or whole societies get themselves started in some direction or some set of relationships that later prove to be unpleasant or lethal and that they see no easy way to back out of or to avoid.

Read More…

After the talks

The real business of decarbonization begins after an agreement is signed at the Paris climate conference, argue David G. Victor and James P. Leape.

Read More…

A ‘perfect’ agreement in Paris is not essential

Success at the latest climate talks will be a recognition by the world’s nations that incremental change will not do the job, says Johan Rockström.

Read More…

The 2 °C dream

Countries have pledged to limit global warming to 2 °C, and climate models say that is still possible. But only with heroic — and unlikely — efforts.

Read More…

Social traps and environmental policy

I argue that all the environmental problems mentioned above (and many other social problems) belong to a category of phenomenon called social traps (Platt 1973). Like animal traps, social traps lead an unwary victim into the jaws of disaster with a tempting bit of bait, and, once the victim is caught, make escape extremely difficult. By studying the features real-world social traps have in common, and by experimenting with some simple laboratory examples of social traps, we can learn more about their general nature and the nature of effective escapes from them. A broad ecological perspective can be effective in understanding, avoiding, and escaping from some social traps, but it must be coupled with effective public policy. Effective policy involves a range of activities from education to regulation to correcting the misleading short-term incentives (the bait) that create traps in the first place.

Read More…

Creation of a Gilded Trap by the High Economic Value of the Maine Lobster Fishery

Unsustainable fishing simplifies food chains and, as with aquaculture, can result in reliance on a few economically valuable species. This lack of diversity may increase risks of ecological and economic disruptions. Centuries of intense fishing have extirpated most apex predators in the Gulf of Maine (United States and Canada), effectively creating an American lobster (Homarus americanus) monoculture. Over the past 20 years, the economic diversity of marine resources harvested in Maine has declined by almost 70%. Today, over 80% of the value of Maine’s fish and seafood landings is from highly abundant lobsters. Inflation- corrected income from lobsters in Maine has steadily increased by nearly 400% since 1985. Fisheries managers, policy makers, and fishers view this as a success. However, such lucrative monocultures increase the social and ecological consequences of future declines in lobsters. In southern New England, disease and stresses related to increases in ocean temperature resulted in more than a 70% decline in lobster abundance, prompting managers to propose closing that fishery. A similar collapse in Maine could fundamentally disrupt the social and economic foundation of its coast. We suggest the current success of Maine’s lobster fishery is a gilded trap. Gilded traps are a type of social trap in which collective actions resulting from economically attractive opportunities outweigh concerns over associated social and ecological risks or consequences. Large financial gain creates a strong reinforcing feedback that deepens the trap. Avoiding or escaping gilded traps requires managing for increased biological and economic diversity. This is difficult to do prior to a crisis while financial incentives for maintaining the status quo are large. The long-term challenge is to shift fisheries management away from single species toward integrated social-ecological approaches that diversify local ecosystems, societies, and economies.

Read More…

Warming caused by cumulative carbon emissions towards the trillionth tonne

We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO2), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide- induced warming of 2 6C above pre-industrial temperatures, with a 5–95% confidence interval of 1.3–3.9 6C.

Read More…

Expanding options for habitat conservation outside protected areas in Kenya: The use of environmental easements

This paper examines wildlife conservation in Kenya on land outside protected areas. It presents a context within which environmental easements as a mechanism to conserve wildlife habitat outside protected areas can be considered based on property rights over land and the management of wildlife resources and their implication for habitat conservation. This paper also describes easements, the legal environment needed in Kenya for adopting environmental easements and makes specific legislative recommendations. A sample environmental easement, adapted for Kenyan circumstances from an American model, is presented. Also outlined are methods of valuing environmental easements, a critical link in establishing a solid framework and process for having an environmental easement granted.

Read More…

Rethinking Private Land Conservation in the Face of Climate Change: A California Case Study & Future Options

This Article looks at how private land conservation may need to be rethought in the face of climate change, with a particular emphasis on the protection of biodiversity.

Read More…

The Use of Conservation Easements in Adapting Conservation to a Changing Climate

Rally 2009: The National Land Conservation Conference Portland, Oregon

Read More…

Conservation easements and global climate change

Land conservation is necessary to combat the ills of climate change and environmental degradation. The warming of the climate system is unequivocal. The Intergovernmental Panel on Climate Change (IPCC) recently released an updated report regarding the existence and impacts of global climate change. The report noted that the “resilience of many ecosystems is likely to be exceeded this century by an unprecedented combination of climate change, associated disturbances (e.g., flooding, drought, wildfire, insects, ocean acidification) and other global climate change drivers (e.g., land use change, pollution,fragmentation of natural systems, overexploitation of resources).”

Read More…

CONSERVATION EASEMENTS AT THE CLIMATE CHANGE CROSSROADS

This article examines the conundrum that occurs when climate change leads to a landscape that conflicts with conservation easement terms. In facing the challenge of a disconnect between conservation easements and a changing world, there are two main tacks. First, conservationists can make conservation easements fit the changing landscape. Second, conservationists can change the landscape to fit the conservation easements. Both of these options present challenges and conflict with the essence of the conservation easement tool. A conservation easement that is too changeable endangers the perpetual protection that is the cornerstone of conservation easements. But, forcing the landscape to fit a conservation easement requires active management, something more often associated with fee-simple ownership. The solution to using conservation easements in a changing world lies somewhere between these two extremes, with the most important level of analysis being an assessment of when to use conservation easements.

Read More…