Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Landscape Partnership Resources Library

Landscape Partnership Resources Library

Temperature-growth divergence in white spruce forests of Old Crow Flats, Yukon Territory, and adjacent regions of northwestern North America

We present a new 23-site network of white spruce ring-width chronologies near boreal treeline in Old Crow Flats, Yukon Territory, Canada. Most chronologies span the last 300 years and some reach the mid-16th century. The chro- nologies exhibit coherent growth patterns before the 1930s. However, since the 1930s, they diverge in trend and exhibit one of two contrasting, but well-replicated patterns we call Group 1 and Group 2. Over the instrumental per- iod (1930–2007) Group 1 sites were inversely correlated with previous-year July temperatures while Group 2 sites were positively correlated with growth-year June temperatures. At the broader northwestern North America (NWNA) scale, we find that the Group 1 and Group 2 patterns are common to a number of white spruce chronolo- gies, which we call NWNA 1 and NWNA 2 chronologies. The NWNA 1 and NWNA 2 chronologies also share a sin- gle coherent growth pattern prior to their divergence (ca. 1950s). Comparison of the NWNA 1/NWNA 2 chronologies against gridded 20th-century temperatures for NWNA and reconstructed northern hemisphere sum- mer temperatures (AD 1300–2000) indicates that all sites responded positively to temperature prior to the mid-20th century (at least back to AD 1300), but that some changed to a negative response (NWNA 1) while others maintained a positive response (NWNA 2). The spatial extent of divergence implies a large-scale forcing. As the divergence appears to be restricted to the 20th century, we suggest that the temperature response shift represents a moisture stress caused by an anomalously warm, dry 20th-century climate in NWNA, as indicated by paleoclimatic records. However, because some sites do not diverge and are located within a few kilometres of divergent sites, we specu- late that site-level factors have been important in determining the susceptibility of sites to the large-scale drivers of divergence. Keywords: boreal treeline, dendroclimatology, divergence, Old Crow Flats, ring-width, white spruce, Yukon Territory

Read More…

Methane emissions from sheep pasture, measured with an open-path eddy covariance system

Methane (CH4) is an important greenhouse gas, contributing 0.4–0.5 W m␣2 to global warming. Methane emissions originate from several sources, including wetlands, rice paddies, termites and ruminating animals. Previous measure- ments of methane flux from farm animals have been carried out on animals in unnatural conditions, in laboratory chambers or fitted with cumbersome masks. This study introduces eddy covariance measurements of CH4, using the newly developed LI-COR LI-7700 open-path methane analyser, to measure field-scale fluxes from sheep grazing freely on pasture. Under summer conditions, fluxes of methane in the morning averaged 30 nmol m␣2 s␣1, whereas those in the afternoon were above 100 nmol m␣2 s␣1, and were roughly two orders of magnitude larger than the small methane emissions from the soil. Methane emissions showed no clear relationship with air temperature or photo- synthetically active radiation, but some diurnal pattern was apparent, probably linked to sheep grazing behaviour and metabolism. Over the measurement period (days 60–277, year 2010), cumulative methane fluxes were 0.34 mol CH4 m␣2, equating to 134.3 g CO2 equivalents m␣2. By comparison, a carbon dioxide (CO2) sink of 819 g CO2 equivalents m␣2 was measured over the same period, but it is likely that much of this would be released back to the atmosphere during the winter or as off-site losses (through microbial and animal respiration). By dividing methane fluxes by the number of sheep in the field each day, we calculated CH4 emissions per head of livestock as 7.4 kg CH4 sheep␣1 yr␣1, close to the published IPCC emission factor of 8 kg CH4 sheep␣1 yr␣1. Keywords: agriculture, carbon sink, closed path, CO2 flux, global warming potential, grassland, grazing, grazing system

Read More…

Mineral soil carbon fluxes in forests and implications for carbon balance assessments

Forest carbon cycles play an important role in efforts to understand and mitigate climate change. Large amounts of carbon (C) are stored in deep mineral forest soils, but are often not considered in accounting for global C fluxes because mineral soil C is commonly thought to be relatively stable. We explore C fluxes associated with forest management practices by examining existing data on forest C fluxes in the northeastern US. Our findings demonstrate that mineral soil C can play an important role in C emissions, especially when considering inten- sive forest management practices. Such practices are known to cause a high aboveground C flux to the atmo- sphere, but there is evidence that they can also promote comparably high and long-term belowground C fluxes. If these additional fluxes are widespread in forests, recommendations for increased reliance on forest biomass may need to be reevaluated. Furthermore, existing protocols for the monitoring of forest C often ignore mineral soil C due to lack of data. Forest C analyses will be incomplete until this problem is resolved. Keywords: carbon accounting, deep soil mineral carbon, Forest carbon pool assessments, forest soil, stand level carbon dynamics

Read More…

The outcome is in the assumptions: analyzing the effects on atmospheric CO2 levels of increased use of bioenergy from forest biomass

Recently, several studies have quantified the effects on atmospheric CO2 concentration of an increased harvest level in forests. Although these studies agreed in their estimates of forest productivity, their conclusions were contradictory. This study tested the effect of four assumptions by which those papers differed. These assump- tions regard (1) whether a single or a set of repeated harvests were considered, (2) at what stage in stand growth harvest takes place, (3) how the baseline is constructed, and (4) whether a carbon-cycle model is applied. A main finding was that current and future increase in the use of bioenergy should be studied considering a series of repeated harvests. Moreover, the time of harvest should be determined based on economical principles, thus taking place before stand growth culminates, which has implications for the design of the baseline scenario. When the most realistic assumptions are used and a carbon-cycle model is applied, an increased harvest level in forests leads to a permanent increase in atmospheric CO2 concentration. Keywords: atmosphere, bioenergy, carbon, climate change, Faustmann, impulse response functions

Read More…

Biogenic vs. geologic carbon emissions and forest biomass energy production

n the current debate over the CO2 emissions implications of switching from fossil fuel energy sources to include a substantial amount of woody biomass energy, many scientists and policy makers hold the view that emissions from the two sources should not be equated. Their rationale is that the combustion or decay of woody biomass is simply part of the global cycle of biogenic carbon and does not increase the amount of carbon in circulation. This view is frequently presented as justification to implement policies that encourage the substitution of fossil fuel energy sources with biomass. We present the opinion that this is an inappropriate conceptual basis to assess the atmospheric greenhouse gas (GHG) accounting of woody biomass energy generation. While there are many other environmental, social, and economic reasons to move to woody biomass energy, we argue that the inferred benefits of biogenic emissions over fossil fuel emissions should be reconsidered. Keywords: bioenergy emissions, biogenic carbon, carbon debt, forest biomass, greenhouse gas accounting

Read More…

Rethinking species’ ability to cope with rapid climate change

Ongoing climate change is assumed to be exceptional because of its unprecedented velocity. However, new geophysical research suggests that dramatic climatic changes during the Late Pleistocene occurred extremely rapid, over just a few years. These abrupt climatic changes may have been even faster than contemporary ones, but relatively few continent-wide extinctions of species have been documented for these periods. This raises questions about the ability of extant species to adapt to ongoing climate change. We propose that the advances in geophysical research challenge current views about species’ ability to cope with climate change, and that lessons must be learned for modelling future impacts of climate change on species. Keywords: adaptation, biodiversity, dispersal, extinction, habitat fragmentation, phenotypic plasticity, rapid climate change

Read More…

Increasing soil methane sink along a 120-year afforestation chronosequence is driven by soil moisture

Upland soils are important sinks for atmospheric methane (CH4), a process essentially driven by methanotrophic bacteria. Soil CH4 uptake often depends on land use, with afforestation generally increasing the soil CH4 sink. How- ever, the mechanisms driving these changes are not well understood to date. We measured soil CH4 and N2O fluxes along an afforestation chronosequence with Norway spruce (Picea abies L.) established on an extensively grazed subal- pine pasture. Our experimental design included forest stands with ages ranging from 25 to >120 years and included a factorial cattle urine addition treatment to test for the sensitivity of soil CH4 uptake to N application. Mean CH4 uptake significantly increased with stand age on all sampling dates. In contrast, CH4 oxidation by sieved soils incu- bated in the laboratory did not show a similar age dependency. Soil CH4 uptake was unrelated to soil N status (but cattle urine additions stimulated N2O emission). Our data indicated that soil CH4 uptake in older forest stands was driven by reduced soil water content, which resulted in a facilitated diffusion of atmospheric CH4 into soils. The lower soil moisture likely resulted from increased interception and/or evapotranspiration in the older forest stands. This mechanism contrasts alternative explanations focusing on nitrogen dynamics or the composition of methano- trophic communities, although these factors also might be at play. Our findings further imply that the current dramatic increase in forested area increases CH4 uptake in alpine regions. Keywords: afforestation, alpine regions, chronosequence, fertilization, methane oxidation, nitrous oxide, Norway spruce, soil moisture regime

Read More…

Trend changes in global greening and browning: contribution of short-term trends to longer-term change

Field observations and time series of vegetation greenness data from satellites provide evidence of changes in terres- trial vegetation activity over the past decades for several regions in the world. Changes in vegetation greenness over time may consist of an alternating sequence of greening and/or browning periods. This study examined this effect using detection of trend changes in normalized difference vegetation index (NDVI) satellite data between 1982 and 2008. Time series of 648 fortnightly images were analyzed using a trend breaks analysis (BFAST) procedure. Both abrupt and gradual changes were detected in large parts of the world, especially in (semi-arid) shrubland and grass- land biomes where abrupt greening was often followed by gradual browning. Many abrupt changes were found around large-scale natural influences like the Mt Pinatubo eruption in 1991 and the strong 1997/98 El Nin ̃o event. The net global figure – considered over the full length of the time series – showed greening since the 1980s. This is in line with previous studies, but the change rates for individual short-term segments were found to be up to five times higher. Temporal analysis indicated that the area with browning trends increased over time while the area with greening trends decreased. The Southern Hemisphere showed the strongest evidence of browning. Here, periods of gradual browning were generally longer than periods of gradual greening. Net greening was detected in all biomes, most conspicuously in croplands and least conspicuously in needleleaf forests. For 15% of the global land area, trends were found to change between greening and browning within the analysis period. This demonstrates the importance of accounting for trend changes when analyzing long-term NDVI time series. Keywords: GIMMS NDVI, global greening and browning, gradual and abrupt change detection, time series analysis, trend breaks

Read More…

Divergent phenological response to hydroclimate variability in forested mountain watersheds

Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins’ Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnos- tic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. Keywords: drought deciduousness, hydroclimate variability, landscape phenology, MODIS NDVI, topoclimate gradient

Read More…

Mountain landscapes offer few opportunities for high-elevation tree species migration

Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep cli- mate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evalu- ated the climatic suitability of four coniferous forest tree species of the western United States based on species distri- bution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an exten- sive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree spe- cies dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examin- ing species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Cli- matic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes. Keywords: climate change, demography, dominance, forest inventory and analysis, productivity, suitability, tree species, upslope migration

Read More…

Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment

Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corre- sponding influences on Earth’s climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeo- rological measurements of surface-atmosphere exchanges with vegetation inventories and chamber-based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post-clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expan- sion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensi- ble heat flux. Gross short-wave and long-wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous broadleaf forest. Keywords: carbon balance, evapotranspiration, forest disturbance and regrowth, forest management, net ecosystem productivity

Read More…

Annual plants change in size over a century of observations

Annual plants change in size over a century of observations

Abstract Studies have documented changes in animal body size over the last century, but very little is known about changes in plant sizes, even though reduced plant productivity is potentially responsible for declines in size of other organisms. Here, I ask whether warming trends in the Great Basin have affected plant size by measuring specimens preserved on herbarium sheets collected between 1893 and 2011. I asked how maximum and minimum temperatures, precipitation, and the Pacific Decadal Oscillation (PDO) in the year of collection affected plant height, leaf size, and flower number, and asked whether changes in climate resulted in decreasing sizes for seven annual forbs. Species had contrasting responses to climate factors, and would not necessarily be expected to respond in parallel to climatic shifts. There were generally positive relationships between plant size and increased minimum and maximum temperatures, which would have been predicted to lead to small increases in plant sizes over the observation period. While one species increased in size and flower number over the observation period, five of the seven species decreased in plant height, four of these decreased in leaf size, and one species also decreased in flower production. One species showed no change. The mechanisms behind these size changes are unknown, and the limited data available on these species (germination timing, area of occupancy, relative abundance) did not explain why some species shrank while others grew or did not change in size over time. These results show that multiple annual forbs are decreasing in size, but that even within the same functional group, species may have contrasting responses to similar environmental stimuli. Changes in plant size could have cascading effects on other members of these communities, and differential responses to directional change may change the composition of plant communities over time.

Read More…

CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data

CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data

The high uncertainty in land-based CO2 fluxes estimates is thought to be mainly due to uncertainty in not only quantifying historical changes among forests, croplands, and grassland, but also due to different processes included in calculation methods. Inclusion of a nitrogen (N) cycle in models is fairly recent and strongly affects carbon (C) fluxes. In this study, for the first time, we use a model with C and N dynamics with three distinct historical reconstructions of land-use and land-use change (LULUC) to quantify LULUC emissions and uncertainty that includes the integrated effects of not only climate and CO2 but also N. The modeled global average emissions including N dynamics for the 1980s, 1990s, and 2000–2005 were 1.8 ` 0.2, 1.7 ` 0.2, and 1.4 ` 0.2 GtC yr␣1, respectively, (mean and range across LULUC data sets). The emissions from tropics were 0.8 ` 0.2, 0.8 ` 0.2, and 0.7 ` 0.3 GtC yr␣1, and the non tropics were 1.1 ` 0.5, 0.9 ` 0.2, and 0.7 ` 0.1 GtC yr␣1. Compared to previous studies that did not include N dynamics, modeled net LULUC emissions were higher, particularly in the non tropics. In the model, N limitation reduces regrowth rates of vegetation in temperate areas resulting in higher net emissions. Our results indicate that exclusion of N dynamics leads to an underestimation of LULUC emissions by around 70% in the non tropics, 10% in the tropics, and 40% globally in the 1990s. The differences due to inclusion/exclusion of the N cycle of 0.1 GtC yr␣1 in the tro- pics, 0.6 GtC yr␣1 in the non tropics, and 0.7 GtC yr␣1 globally (mean across land-cover data sets) in the 1990s were greater than differences due to the land-cover data in the non tropics and globally (0.2 GtC yr␣1). While land-cover information is improving with satellite and inventory data, this study indicates the importance of accounting for different processes, in particular the N cycle. Keywords: carbon cycle, carbon emissions, land-use change, model, nitrogen cycle

Read More…

Hydrology, forests and precipitation recycling: a reply to van der Ent et al

We warmly welcome the debate our article on the relationship between forest cover and water yield has inspired.....We read with general satisfaction their view that: ‘Ellison et al. (2012a) [have] initiated an important shift in thinking of forests as water suppliers, instead of mere water users’.On the other hand, we regret that we are required to point out and correct a number of misplaced criticisms and misrepresentations of our work. climate change adaptation, ecosystem services, forests, precipitation recycling, water yield

Read More…

Interactive influences of ozone and climate on streamflow of forested watersheds

The capacity of forests to mitigate global climate change can be negatively influenced by tropospheric ozone that impairs both photosynthesis and stomatal control of plant transpiration, thus affecting ecosystem productivity and watershed hydrology. We have evaluated individual and interactive effects of ozone and climate on late season streamflow for six forested watersheds (38–970 000 ha) located in the Southeastern United States. Models were based on 18–26 year data records for each watershed and involved multivariate analysis of interannual variability of late season streamflow in response to physical and chemical climate during the growing season. In all cases, some combination of ozone variables significantly improved model performance over climate-only models. Effects of ozone and ozone 9 climate interactions were also consistently negative and were proportional to variations in actual ozone exposures, both spatially across the region and over time. Conservative estimates of the influence of ozone on the variability (R2) of observed flow ranged from 7% in the area of lowest ozone exposure in West Virginia to 23% in the areas of highest exposure in Tennessee. Our results are supported by a controlled field study using free-air concentration enrichment methodology which indicated progres- sive ozone-induced loss of stomatal control over tree transpiration during the summer in mixed aspen-birch stands. Despite the frequent assumption that ozone reduces tree water loss, our findings support increasing evidence that ozone at near ambient concentrations can reduce stomatal control of leaf transpiration, and increase water use. Increases in evapotranspiration and associated streamflow reductions in response to ambient ozone exposures are expected to episod- ically increase the frequency and severity of drought and affect flow-dependent aquatic biota in forested watersheds. Regional and global models of hydrologic cycles and related ecosystem functions should consider potential interactions of ozone with climate under both current and future warmer and ozone-enriched climatic conditions. Keywords: climate, drought enhancement, forest water use, ozone, streamflow

Read More…

Soil organic matter turnover is governed by accessibility not recalcitrance

Mechanisms to mitigate global climate change by sequestering carbon (C) in different ‘sinks’ have been proposed as at least temporary measures. Of the major global C pools, terrestrial ecosystems hold the potential to capture and store substantially increased volumes of C in soil organic matter (SOM) through changes in management that are also of benefit to the multitude of ecosystem services that soils provide. This potential can only be realized by determining the amount of SOM stored in soils now, with subsequent quantification of how this is affected by management strate- gies intended to increase SOM concentrations, and used in soil C models for the prediction of the roles of soils in future climate change. An apparently obvious method to increase C stocks in soils is to augment the soil C pools with the longest mean residence times (MRT). Computer simulation models of soil C dynamics, e.g. RothC and Century, partition these refractory constituents into slow and passive pools with MRTs of centuries to millennia. This partition- ing is assumed to reflect: (i) the average biomolecular properties of SOM in the pools with reference to their source in plant litter, (ii) the accessibility of the SOM to decomposer organisms or catalytic enzymes, or (iii) constraints imposed on decomposition by environmental conditions, including soil moisture and temperature. However, con- temporary analytical approaches suggest that the chemical composition of these pools is not necessarily predictable because, despite considerable progress with understanding decomposition processes and the role of decomposer organisms, along with refinements in simulation models, little progress has been made in reconciling biochemical properties with the kinetically defined pools. In this review, we will explore how advances in quantitative analytical techniques have redefined the new understanding of SOM dynamics and how this is affecting the development and application of new modelling approaches to soil C. Keywords: C isotopes, decomposition, recalcitrance, soil C models, soil microorganisms, soil organic matter

Read More…

Temperature and precipitation controls over leaf- and ecosystem-level CO2 flux along a woody plant encroachment gradient

Conversion of grasslands to woodlands may alter the sensitivity of CO2 exchange of individual plants and entire ecosystems to air temperature and precipitation. We combined leaf-level gas exchange and ecosystem-level eddy covariance measurements to quantify the effects of plant temperature sensitivity and ecosystem temperature responses within a grassland and mesquite woodland across seasonal precipitation periods. In so doing, we were able to estimate the role of moisture availability on ecosystem temperature sensitivity under large-scale vegetative shifts. Optimum temperatures (Topt) for net photosynthetic assimilation (A) and net ecosystem productivity (NEP) were estimated from a function fitted to A and NEP plotted against air temperature. The convexities of these tem- perature responses were quantified by the range of temperatures over which a leaf or an ecosystem assimilated 50% of maximum NEP (Ω50). Under dry pre- and postmonsoon conditions, leaf-level Ω50 in C3 shrubs were two-to-three times that of C4 grasses, but under moist monsoon conditions, leaf-level Ω50 was similar between growth forms. At the ecosystems-scale, grassland NEP was more sensitive to precipitation, as evidenced by a 104% increase in maxi- mum NEP at monsoon onset, compared to a 57% increase in the woodland. Also, woodland NEP was greater across all temperatures experienced by both ecosystems in all seasons. By maintaining physiological function across a wider temperature range during water-limited periods, woody plants assimilated larger amounts of carbon. This higher carbon-assimilation capacity may have significant implications for ecosystem responses to projected climate change scenarios of higher temperatures and more variable precipitation, particularly as semiarid regions experi- ence conversions from C4 grasses to C3 shrubs. As regional carbon models, CLM 4.0, are now able to incorporate functional type and photosynthetic pathway differences, this work highlights the need for a better integration of the interactive effects of growth form/functional type and photosynthetic pathway on water resource acquisition and temperature sensitivity. Keywords: eddy covariance, mesquite (Prosopis velutina), net ecosystem exchange, photosynthesis, respiration, temperature optima, vegetative change, woody plant encroachment

Read More…

On the forest cover–water yield debate: from demand- to supply-side thinking

Several major articles from the past decade and beyond conclude the impact of reforestation or afforestation on water yield is negative: additional forest cover will reduce and removing forests will raise downstream water availability. A second group of authors argue the opposite: planting additional forests should raise downstream water availability and intensify the hydrologic cycle. Obtaining supporting evidence for this second group of authors has been more dif- ficult due to the larger scales at which the positive effects of forests on the water cycle may be seen. We argue that for- est cover is inextricably linked to precipitation. Forest-driven evapotranspiration removed from a particular catchment contributes to the availability of atmospheric moisture vapor and its cross-continental transport, raising the likelihood of precipitation events and increasing water yield, in particular in continental interiors more distant from oceans. Sea- sonal relationships heighten the importance of this phenomenon. We review the arguments from different scales and perspectives. This clarifies the generally beneficial relationship between forest cover and the intensity of the hydro- logic cycle. While evidence supports both sides of the argument – trees can reduce runoff at the small catchment scale – at larger scales, trees are more clearly linked to increased precipitation and water availability. Progressive deforesta- tion, land conversion from forest to agriculture and urbanization have potentially negative consequences for global precipitation, prompting us to think of forest ecosystems as global public goods. Policy-making attempts to measure product water footprints, estimate the value of ecosystem services, promote afforestation, develop drought mitigation strategies and otherwise manage land use must consider the linkage of forests to the supply of precipitation. Keywords: afforestation, climate change adaptation, forest ecosystem services, precipitation recycling, water yield

Read More…

Climate change and the invasion of California by grasses

Climate change and the invasion of California by grasses

Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait differences between groups allows us to predict changes in the exotic-native balance under climate change scenarios. Exotic species are more likely to be annual, taller, with larger leaves, larger seeds, higher specific leaf area, and higher leaf N percentage than native species. Across the state, all these traits are associated with regions with higher temperature. Therefore, we predict that increasing temperatures will favor trait states that tend to be possessed by exotic species, increasing the dominance of exotic species. This prediction is corroborated by the current distribution of exotic species richness relative to native richness in California; warmer areas contain higher proportions of exotic species. This pattern was very well captured by a simple model that predicts invasion severity given only the trait–climate relationship for native species and trait differences between native and exotic species. This study provides some of the first evidence for an important interaction between climate change and species invasions across very broad geographic and taxonomic scales.

Read More…

Effects of drought on avian community structure

Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most relevant, or how response varies geographically at broad spatial scales. Our goals were thus to determine (1) how avian abundance and species richness are related to drought, (2) whether community variations are more related to vegetation vigour or precipitation deviations and at what time periods relationships were strongest, (3) how response varies among avian guilds, and (4) how response varies among ecoregions with different precipitation regimes. Using mixed effect models and 1989–2005 North American Breeding Bird Survey data over the central United States, we examined the response to 10 precipitation- and greenness- based metrics by abundance and species richness of the avian community overall, and of four behavioural guilds. Drought was associated with the most negative impacts on avifauna in the semiarid Great Plains, while positive responses were observed in montane areas. Our models predict that in the plains, Neotropical migrants respond the most negatively to extreme drought, decreasing by 13.2% and 6.0% in abundance and richness, while permanent resident abundance and richness increase by 11.5% and 3.6%, respectively in montane areas. In most cases, response of abundance was greater than richness and models based on precipitation metrics spanning 32-week time periods were more supported than those covering shorter time periods and those based on greenness. While drought is but one of myriad environmental variations birds encounter, our results indicate that drought is capable of imposing sizable shifts in abundance, richness, and composition on avian communities, an important implica- tion of a more climatically variable future. Keywords: abundance, birds, drought, Great Plains, greenness, mixed effects models, North American Breeding Bird Survey, precipitation, richness, United States

Read More…