Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Landscape Partnership Resources Library

Landscape Partnership Resources Library

Temperature Mediated Moose Survival in Northeastern Minnesota

The earth is in the midst of a pronounced warming trend and temperatures in Minnesota, USA, as elsewhere, are projected to increase. Northern Minnesota represents the southern edge to the circumpolar distribution of moose (Alces alces), a species intolerant of heat. Moose increase their metabolic rate to regulate their core body temperature as temperatures rise. We hypothesized that moose survival rates would be a function of the frequency and magnitude that ambient temperatures exceeded the upper critical temperature of moose. We compared annual and seasonal moose survival in northeastern Minnesota between 2002 and 2008 with a temperature metric. We found that models based on January temperatures above the critical threshold were inversely correlated with subsequent survival and explained .78% of variability in spring, fall, and annual survival. Models based on late-spring temperatures also explained a high proportion of survival during the subsequent fall. A model based on warm-season temperatures was important in explaining survival during the subsequent winter. Our analyses suggest that temperatures may have a cumulative influence on survival. We expect that continuation or acceleration of current climate trends will result in decreased survival, a decrease in moose density, and ultimately, a retreat of moose northward from their current distribution.

Read More…

On the Hydrologic Adjustment of Climate-Model Projections: The Potential Pitfall of Potential Evapotranspiration

Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement (‘‘downscaling’’), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was pro- jected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In com- parison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate change impacts on water. KEYWORDS: Hydrologic model; Climate change; Potential evapotranspi- ration

Read More…

Migration and Dispersal: Science Special Section

INTRODUCTION: When to Go, Where to Stop THE ABILITY TO MOVE, AT SOME STAGE IN THE LIFE CYCLE, IS FUNDAMENTAL TO SUCCESS in life. Passive drift in water columns conferred a selective advantage for early life, offering an escape from starvation and genetic uniformity. Since then, organisms have evolved many ways to disperse and migrate in response to the pressures of finding resources, escaping predators, seeking out mates and suitable breeding grounds, and distancing themselves from family. Dispersal in its broadest sense means movement away from the birthplace. Strictly speaking, migration involves travel in a periodically and geographically predictable way, whether it occurs just once or many times. In this issue, Science deals with what we know, what we need to know, and how we are going to find out more about both of these movement types. In plants, the spore, seed, or fruit is typically the unit of dispersal. Although the many morphological adaptations for their dispersal are known, until now, researchers have been unable to determine the distances traveled or the proportion of dispersal events that lead to seedlings. In one Perspective (p. 786), Nathan describes recent developments in the modeling and measurement of the long-distance dispersal of plants. A News story by Holden (p. 779) discusses the push to come up with a theoretical framework, not just for plants, but for all moving organisms. Organisms also disperse in reaction to changing habitats and climate. The Perspective by Kokko and López-Sepulcre (p. 789) discusses the selective forces affecting this ability in animals and how dispersal translates into range expansions and contractions. Kintisch (p. 776) describes the challenges for marine scientists assessing how climate change may affect oceangoing species. Humans have been great dispersers. Colonizing new habitat has been a hallmark of human ecology over the past million years or so. In a Review (p. 796), Mellars considers recent advances in archaeology and genetics that are illuminating the controversies over the routes taken by ancient peoples in the colonization of Asia 40,000 to 60,000 years ago. Two Perspectives consider migration: Holland et al. (p. 794) focus on migrating insects, which tend to travel in established geographical patterns across several generations rather than returning to their birthplace, and Alerstam (p. 791) discusses the accumulating and sometimes conflicting evidence about the navigational mechanisms used by animals (particularly birds) in long-distance annual migrations. In a related Report (p. 837), Muheim et al. describe the role of polarized light at dawn and sunset in calibrating the magnetic compasses of migrating birds. A News story by Morell (p. 783) describes a new model that will clarify the mix of genes and environmental responses underlying successful bird migration. As News stories by Blackburn and Holden (p. 780) and Unger (p. 784) point out, ingenuity and persistence are beginning to pay off in new techniques for following organisms, be they fish, crabs, jellyfish, rhinos, or polar bears. Thanks to these advances, the study of the ecology and evolution of movement is charging ahead and unearthing the challenges faced by organisms in dispersing and migrating in a world undergoing anthropogenic change.

Read More…

Millennium Ecosystem Assessment: Research Needs

The research community needs to develop analytical tools for projecting future trends and evaluating the success of interventions as well as indicators to monitor biological, physical, and social changes.

Read More…

Effects of grazing on grassland soil carbon: a global review

Effects of grazing on grassland soil carbon: a global review

Soils of grasslands represent a large potential reservoir for storing CO2, but this potential likely depends on how grasslands are managed for large mammal grazing. Previous studies found both strong positive and negative grazing effects on soil organic carbon (SOC) but explanations for this variation are poorly developed. Expanding on previous reviews, we performed a multifactorial meta-analysis of grazer effects on SOC density on 47 independent experimen- tal contrasts from 17 studies. We explicitly tested hypotheses that grazer effects would shift from negative to positive with decreasing precipitation, increasing fineness of soil texture, transition from dominant grass species with C3 to C4 photosynthesis, and decreasing grazing intensity, after controlling for study duration and sampling depth. The six variables of soil texture, precipitation, grass type, grazing intensity, study duration, and sampling depth explained 85% of a large variation (`150 g m␣2 yr␣1) in grazing effects, and the best model included significant interactions between precipitation and soil texture (P = 0.002), grass type, and grazing intensity (P = 0.012), and study duration and soil sampling depth (P = 0.020). Specifically, an increase in mean annual precipitation of 600 mm resulted in a 24% decrease in grazer effect size on finer textured soils, while on sandy soils the same increase in precipitation pro- duced a 22% increase in grazer effect on SOC. Increasing grazing intensity increased SOC by 6–7% on C4-dominated and C4–C3 mixed grasslands, but decreased SOC by an average 18% in C3-dominated grasslands. We discovered these patterns despite a lack of studies in natural, wildlife-dominated ecosystems, and tropical grasslands. Our results, which suggest a future focus on why C3 vs. C4-dominated grasslands differ so strongly in their response of SOC to grazing, show that grazer effects on SOC are highly context-specific and imply that grazers in different regions might be managed differently to help mitigate greenhouse gas emissions. Keywords: carbon sequestration, grasslands, grazing, grazing intensity, precipitation, soil organic carbon, soil texture

Read More…

Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis

Climate change and habitat loss are both key threatening processes driving the global loss in biodiversity. Yet little is known about their synergistic effects on biological populations due to the complexity underlying both processes. If the combined effects of habitat loss and climate change are greater than the effects of each threat individually, current conservation management strategies may be inefficient and at worst ineffective. Therefore, there is a pressing need to identify whether interacting effects between climate change and habitat loss exist and, if so, quantify the magnitude of their impact. In this article, we present a meta-analysis of studies that quantify the effect of habitat loss on biologi- cal populations and examine whether the magnitude of these effects depends on current climatic conditions and his- torical rates of climate change. We examined 1319 papers on habitat loss and fragmentation, identified from the past 20 years, representing a range of taxa, landscapes, land-uses, geographic locations and climatic conditions. We find that current climate and climate change are important factors determining the negative effects of habitat loss on spe- cies density and/or diversity. The most important determinant of habitat loss and fragmentation effects, averaged across species and geographic regions, was current maximum temperature, with mean precipitation change over the last 100 years of secondary importance. Habitat loss and fragmentation effects were greatest in areas with high maxi- mum temperatures. Conversely, they were lowest in areas where average rainfall has increased over time. To our knowledge, this is the first study to conduct a global terrestrial analysis of existing data to quantify and test for inter- acting effects between current climate, climatic change and habitat loss on biological populations. Understanding the synergistic effects between climate change and other threatening processes has critical implications for our ability to support and incorporate climate change adaptation measures into policy development and management response. Keywords: climate change, habitat fragmentation, habitat loss, interactions, meta-analysis, mixed-effects logistic regression

Read More…

Untangling the confusion around land carbon science and climate change mitigation policy

Depletion of ecosystem carbon stocks is a significant source of atmospheric CO2 and reducing land-based emissions and maintaining land carbon stocks contributes to climate change mitigation. We summarize current understanding about human perturbation of the global carbon cycle, examine three scientific issues and consider implications for the interpretation of international climate change policy decisions, concluding that considering carbon storage on land as a means to ‘offset’ CO2 emissions from burning fossil fuels (an idea with wide currency) is scientifically flawed. The capacity of terrestrial ecosystems to store carbon is finite and the current sequestration potential primarily reflects depletion due to past land use. Avoiding emissions from land carbon stocks and refilling depleted stocks reduces atmospheric CO2 concentration, but the maximum amount of this reduction is equivalent to only a small fraction of potential fossil fuel emissions.

Read More…

Wildfire and forest harvest disturbances in the boreal forest leave different long-lasting spatial signatures

Natural disturbances leave long-term legacies that vary among landscapes and ecosystem types, and which become integral parts of successional pro- cesses at a given location. As humans change land use, not only are immediate post-disturbance patterns altered, but the processes of recovery themselves are likely altered by the disturbance. We assessed whether short-term effects on soil and vegetation that distinguish wildfire from forest harvest persist over 60 years after disturbance in boreal black spruce forests, or post-disturbance processes of recovery promote convergence of the two disturbance types.

Read More…

Long term climate implications of 2050 emission reduction targets

A coupled atmosphere-ocean-carbon cycle model is used to examine the long term climate implications of various 2050 greenhouse gas emission reduction targets. All emission targets considered with less than 60% global reduction by 2050 break the 2.0°C threshold warming this century, a number that some have argued represents an upper bound on manageable climate warming. Even when emissions are stabilized at 90% below present levels at 2050, this 2.0°C threshold is eventually broken. Our results suggest that if a 2.0°C warming is to be avoided, direct CO2 capture from the air, together with subsequent sequestration, would eventually have to be introduced in addition to sustained 90% global carbon emissions reductions by 2050.

Read More…

Frequent Long-Distance Plant Colonization

The ability of species to track their ecological niche after climate change is a major source of uncertainty in predicting their future distribution. By analyzing DNA fingerprinting (amplified fragment-length polymorphism) of nine plant species, we show that long-distance colonization of a remote arctic archipelago, Svalbard, has occurred repeatedly and from several source regions. Propagules are likely carried by wind and drifting sea ice. The genetic effect of restricted colonization was strongly correlated with the temperature requirements of the species, indicating that establishment limits distribution more than dispersal. Thus, it may be appropriate to assume unlimited dispersal when predicting long-term range shifts in the Arctic.

Read More…

A paradigm shift in understanding and quantifying the effects of forest harvesting on floods in snow environments

A well-established precept in forest hydrology is that any reduction of forest cover will always have a progressively smaller effect on floods with increasing return period. The underlying logic in snow environments is that during the largest snowmelt events the soils and vegetation canopy have little additional storage capacity and under these conditions much of the snowmelt will be converted to runoff regardless of the amount or type of vegetation cover. Here we show how this preconceived physical understanding, reinforced by the outcomes of numerous paired watershed studies, is indefensible because it is rationalized outside the flood frequency distribution framework. We conduct a meta-analysis of postharvest data at four catchments (3–37 km2) with moderate level of harvesting (33%–40%) to demonstrate how harvesting increases the magnitude and frequency of all floods on record (19–99 years) and how such effects can increase unchecked with increasing return period as a consequence of changes to both the mean (þ11% to þ35%) and standard deviation (􏰁12% to þ19%) of the flood frequency distribution. We illustrate how forest harvesting has substantially increased the frequency of the largest floods in all study sites regardless of record length and this also runs counter to the prevailing wisdom in hydrological science. The dominant process responsible for these newly emerging insights is the increase in net radiation associated with the conversion from longwave-dominated snowmelt beneath the canopy to shortwave-dominated snowmelt in harvested areas, further amplified or mitigated by basin characteristics such as aspect distribution, elevation range, slope gradient, amount of alpine area, canopy closure, and drainage density. Investigating first order environmental controls on flood frequency distributions, a standard research method in stochastic hydrology, represents a paradigm shift in the way harvesting effects are physically explained and quantified in forest hydrology literature.

Read More…

The Role of Livestock Production in Carbon and Nitrogen Cycles

This review looks at the role of the livestock sector in carbon (C) and nitrogen (N) cycles from a global perspective and considers impacts at the various stages of the commodity chain. With regard to livestock, N and C cycles are closely connected to livestock’s role in land use and land-use change. Livestock’s land use includes grazing land and cropland dedicated to the production of feed crops and fodder. Considering emissions along the entire commodity chain, livestock currently contribute about 18% to the global warming effect. Live- stock contribute about 9% of total carbon dioxide (CO2) emissions, but 37% of methane (CH4), and 65% of nitrous oxide (N2O). The latter will substantially increase over the coming decades, as the pasture land is currently at maximum expanse in most regions; future expansion of the livestock sector will increasingly be crop based. The chapter also reviews mitigation options to reduce C and N emissions from livestock’s land use, production, and animal waste.

Read More…

Divergent global precipitation changes induced by natural versus anthropogenic forcing

As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry sub-tropical regions (1). The absolute magnitude and regional details of such changes, however, remain intensely debated (2,3). As is well known from El Nino studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall (4,5). Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation (6–9). In contrast, in most model projections of future greenhouse warming this gradient weakens (2,10,11). It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000–1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget (12), which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth’s surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.

Read More…

Impacts of climate change on August stream discharge in the Central-Rocky Mountains

In the snowmelt dominated hydrology of arid western US landscapes, late summer low streamflow is the most vulnerable period for aquatic ecosystem habitats and trout populations. This study analyzes mean August discharge at 153 streams throughout the Central Rocky Mountains of North America (CRMs) for changes in discharge from 1950–2008. The purpose of this study was to determine if: (1) Mean August stream discharge values have decreased over the last half-century; (2) Low discharge values are occurring more frequently; (3) Climatic variables are influencing August discharge trends. Here we use a strict selection process to characterize gauging stations based on amount of anthropogenic impact in order to identify heavily impacted rivers and understand the relationship between climatic variables and discharge trends. Using historic United States Geologic Survey discharge data, we analyzed data for trends of 40–59 years. Combining of these records along with aerial photos and water rights records we selected gauging stations based on the length and continuity of discharge records and categorized each based on the amount of diversion. Variables that could potentially influence discharge such as change in vegetation and Pacific Decadal Oscillation (PDO) were examined, but we found that that both did not significantly influence August discharge patterns. Our analyses indicate that non-regulated watersheds are experiencing substantial declines in stream discharge and we have found that 89% of all non-regulated stations exhibit a declining slope. Additionally our results here indicate a significant (α≤0.10) decline in discharge from 1951–2008 for the CRMs. Correlations results at our pristine sites show a negative relationship between air temperatures and discharge and these results coupled with increasing air temperature trends pose serious concern for aquatic ecosystems in CRMs.

Read More…

Effects of Management on Carbon Sequestration in Forest Biomass in Southeast Alaska

The Tongass National Forest (Tongass) is the largest national forest and largest area of old-growth forest in the United States. Spatial geographic informa- tion system data for the Tongass were combined with forest inventory data to estimate and map total carbon stock in the Tongass; the result was 2.8±0.5PgC,or8%of the total carbon in the forests of the conterminous USA and 0.25% of the carbon in global forest vegetation and soils. Cumulative net carbon loss from the Tongass due to management of the forest for the period 1900–95 was estimated at 6.4–17.2 Tg C. Using our spatially explicit data for carbon stock and net flux, we modeled the potential effect of five management regimes on future net carbon flux. Estimates of net carbon flux were sensitive to projections of the rate of carbon accumulation in second-growth forests and to the amount of carbon left in standing biomass after harvest. Projections of net carbon flux in the Tongass range from 0.33 Tg C annual sequestration to 2.3 Tg C annual emission for the period 1995–2095. For the period 1995–2195, net flux estimates range from 0.19 Tg C annual sequestra- tion to 1.6 Tg C annual emission. If all timber harvesting in the Tongass were halted from 1995 to 2095, the economic value of the net carbon sequestered during the 100-year hiatus, assuming $20/Mg C, would be $4 to $7 million/y (1995 US dollars). If a prohibition on logging were extended to 2195, the annual economic value of the carbon sequestered would be largely unaffected ($3 to $6 million/y). The potential annual economic value of carbon sequestration with management maxi- mizing carbon storage in the Tongass is comparable to revenue from annual timber sales historically authorized for the forest. Key words: carbon sequestration; geographic information system; climate change; forest management; Alaska.

Read More…

Conservation value of forests attacked by bark beetles: Highest number of indicator species is found in early successional stages

Heavy natural disturbance in large protected areas of former commercial forests increasingly evokes European parliaments to call for management intervention because a loss of habitats and species is feared. In contrast, natural early successional habitats have recently been recognised as important for conservation. Current knowledge in this field mostly results from studies dealing only with selected taxa. Here we analyse the success of species across 24 lineages of three kingdoms in the Bavarian Forest National Park (Germany) after 15 years of a European spruce bark beetle (Ips typographus L.) outbreak that led to rapid canopy opening. Using indicator species analysis, we found 257 species with a significant preference for open forests and 149 species with a preference for closed forests, but only 82 species with a preference for the stand conditions transitional between open and closed forests. The large number of species with a preference for open forests across lineages supports the role of this bark beetle as a keystone species for a broad array of species. The slowdown of the outbreak after 15 years in the core zone of the national park resulted in less than half of the area being affected, due to variability in stand ages and tree species mixtures. Our case study is representative of the tree species composition and size of many large protected montane areas in Central European countries and illustrates that (1) natural disturbances increase biodiversity in formerly managed forests and (2) a montane protected area spanning 10,000 ha of low range mountains is likely sufficient to allow natural disturbances without a biased loss of closed-forest species.

Read More…

Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change

Based on observed atmospheric CO2 concentration and an inverse method, we estimate that the Southern Ocean sink of CO2 has weakened between 1981 and 2004 by 0.08 PgC/y per decade relative to the trend expected from the large increase in atmospheric CO2. This weakening is attributed to the observed increase in Southern Ocean winds resulting from human activities and projected to continue in the future. Consequences include a reduction in the efficiency of the Southern Ocean sink of CO2 in the short term (~25 years) and possibly a higher level of stabilization of atmospheric CO2 on a multicentury time scale.

Read More…

Long-Distance Dispersal of Plants

Long-distance dispersal (LDD) of plants poses challenges to research because it involves rare events driven by complex and highly stochastic processes. The current surge of renewed interest in LDD, motivated by growing recognition of its critical importance for natural populations and communities and for humanity, promises an improved, quantitatively derived understanding of LDD. To gain deep insights into the patterns, mechanisms, causes, and consequences of LDD, we must look beyond the standard dispersal vectors and the mean trend of the distribution of dispersal distances. ‘‘Nonstandard’’ mechanisms such as extreme climatic events and generalized LDD vectors seem to hold the greatest explanatory power for the drastic deviations from the mean trend, deviations that make the nearly impossible LDD a reality.

Read More…

Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests

Tropical montane cloud forests (TMCFs) depend on predictable, frequent, and prolonged immersion in cloud. Clearing upwind lowland forest alters surface energy budgets in ways that influence dry season cloud fields and thus the TMCF environment. Landsat and Geostationary Operational Environmental Satellite imagery show that deforested areas of Costa Rica’s Caribbean lowlands remain relatively cloud-free when forested regions have well-developed dry season cumulus cloud fields. Further, regional atmospheric simulations show that cloud base heights are higher over pasture than over tropical forest areas under reasonable dry season conditions. These results suggest that land use in tropical lowlands has serious impacts on ecosystems in adjacent mountains.

Read More…

Stream biodiversity: The ghost of land use past

The influence of past land use on the present- day diversity of stream invertebrates and fish was investigated by comparing watersheds with different land-use history. Whole watershed land use in the 1950s was the best predictor of present-day diversity, whereas riparian land use and watershed land use in the 1990s were comparatively poor indicators. Our findings indicate that past land-use activity, particularly agriculture, may result in long-term modifications to and reductions in aquatic diversity, regardless of reforestation of riparian zones. Preservation of habitat fragments may not be sufficient to maintain natural diversity in streams, and maintenance of such biodiversity may require conservation of much or all of the watershed.

Read More…