Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Landscape Partnership Resources Library

Landscape Partnership Resources Library

The beaver meadow complex revisited – the role of beavers in post-glacial floodplain development

We evaluate the validity of the beaver-meadow complex hypothesis, used to explain the deposition of extensive fine sediment in broad, low-gradient valleys. Previous work establishes that beaver damming forms wet meadows with multi-thread channels and enhanced sediment storage, but the long-term geomorphic effects of beaver are unclear. We focus on two low-gradient broad valleys, Beaver Meadows and Moraine Park, in Rocky Mountain National Park (Colorado, USA). Both valleys experienced a dramatic decrease in beaver population in the past century and provide an ideal setting for determining whether contemporary geomorphic conditions and sedimentation are within the historical range of variability of valley bottom processes. We examine the geomorphic significance of beaver-pond sediment by determining the rates and types of sedimentation since the middle Holocene and the role of beaver in driving floodplain evolution through increased channel complexity and fine sediment deposition. Sediment analyses from cores and cutbanks indicate that 33–50% of the alluvial sediment in Beaver Meadows is ponded and 28–40% was deposited in-channel; in Moraine Park 32–41% is ponded sediment and 40–52% was deposited in-channel. Radiocar- bon ages spanning 4300 years indicate long-term aggradation rates of ~0.05 cm yr-1. The observed highly variable short-term rates indicate temporal heterogeneity in aggradation, which in turn reflects spatial heterogeneity in processes at any point in time. Channel complexity increases directly downstream of beaver dams. The increased complexity forms a positive feedback for beaver-induced sedimentation; the multi-thread channel increases potential channel length for further damming, which increases the potential area occupied by beaver ponds and the volume of fine sediment trapped. Channel complexity decreased significantly as surveyed beaver population decreased. Beaver Meadows and Moraine Park represent settings where beaver substantially influence post-glacial floodplain aggradation. These findings underscore the importance of understanding the historical range of variability of valley bottom processes, and implications for environmental restoration. Copyright © 2011 John Wiley & Sons, Ltd. KEYWORDS: floodplain; sedimentation; beaver; Holocene

Read More…

Global imprint of climate change on marine life

Past meta-analyses of the response of marine organisms to climate change have examined a limited range of locations1,2, taxonomic groups2–4 and/or biological responses5,6. This has precluded a robust overview of the effect of climate change in the global ocean. Here, we synthesized all available studies of the consistency of marine ecological observations with expectations under climate change. This yielded a meta- database of 1,735 marine biological responses for which either regional or global climate change was considered as a driver. Included were instances of marine taxa responding as expected, in a manner inconsistent with expectations, and taxa demonstrating no response. From this database, 81–83% of all observations for distribution, phenology, community composition, abundance, demography and calcification across taxa and ocean basins were consistent with the expected impacts of climate change. Of the species responding to climate change, rates of distribution shifts were, on average, consistent with those required to track ocean surface temperature changes. Conversely, we did not find a relationship between regional shifts in spring phenology and the seasonality of temperature. Rates of observed shifts in species’ distributions and phenology are comparable to, or greater, than those for terrestrial systems.

Read More…

Point of No Return :The massive climate threats we must avoid

The world is quickly reaching a Point of No Return for preventing the worst impacts of climate change. Continuing on the current course will make it difficult, if not impossible, to prevent the widespread and catastrophic impacts of climate change. The costs will be substantial: billions spent to deal with the destruction of extreme weather events, untold human suffering, and the deaths of tens of millions from the impacts by as soon as 2030.

Read More…

Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reduc- tions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well- being, yet there is poor understanding of the sources and magni- tude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grass- lands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegeta- tion cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces. arid ∣ horizontal flux ∣ land use ∣ national park ∣ threshold shear velocity

Read More…

Wilderness and biodiversity conservation

Human pressure threatens many species and ecosystems, so con- servation efforts necessarily prioritize saving them. However, conservation should clearly be proactive wherever possible. In this article, we assess the biodiversity conservation value, and specif- ically the irreplaceability in terms of species endemism, of those of the planet’s ecosystems that remain intact. We find that 24 wil- derness areas, all >1 million hectares, are >70% intact and have human densities of less than or equal to five people per km2. This wilderness covers 44% of all land but is inhabited by only 3% of people. Given this sparse population, wilderness conservation is cost-effective, especially if ecosystem service value is incorporated. Soberingly, however, most wilderness is not speciose: only 18% of plants and 10% of terrestrial vertebrates are endemic to individual wildernesses, the majority restricted to Amazonia, Congo, New Guinea, the Miombo–Mopane woodlands, and the North American deserts. Global conservation strategy must target these five wil- dernesses while continuing to prioritize threatened biodiversity hotspots.

Read More…

Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temper- atures beyond the species’ physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rain- ier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than tempera- ture influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our find- ings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations. global change | hydrology | invasive species | niche model | distribution modeling

Read More…

Housing growth in and near United States protected areas limits their conservation value

Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the contermi- nous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern “Noah’s Ark.” Between 1940 and 2000, 28 mil- lion housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of pro- tected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly iso- lated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries. conservation threats | effectiveness | parks | reserves

Read More…

Molecular study of worldwide distribution and diversity of soil animals

The global distribution of soil animals and the relationship of below-ground biodiversity to above-ground biodiversity are not well understood. We examined 17,516 environmental 18S rRNA gene sequences representing 20 phyla of soil animals sampled from 11 locations covering a range of biomes and latitudes around the world. No globally cosmopolitan taxa were found and only 14 of 2,259 operational taxonomic units (OTUs) found were common to four or more locations. Half of those were circumpolar and may reflect higher connectivity among circumpolar locations compared with other locations in the study. Even when OTU assembly criteria were relaxed to approximate the family taxo- nomic level, only 34 OTUs were common to four or more locations. A comparison of our diversity and community structure data to environmental factors suggests that below-ground animal diver- sity may be inversely related to above-ground biodiversity. Our data suggest that greater soil inorganic N and lower pH could explain the low below-ground biodiversity found at locations of high above-ground biodiversity. Our locations could also be characterized as being dominated by microarthropods or domi- nated by nematodes. Locations dominated by arthropods were primarily forests with lower soil pH, root biomass, mean annual temperature, low soil inorganic N and higher C:N, litter and moisture compared with nematode-dominated locations, which were mostly grasslands. Overall, our data indicate that small soil animals have distinct biogeographical distributions and provide unique evidence of the link between above-ground and below- ground biodiversity at a global scale. cosmopolitan species | endemism

Read More…

Improved probability of detection of ecological “surprises”

Ecological “surprises” are defined as unexpected findings about the natural environment. They are critically important in ecology because they are catalysts for questioning and reformulating views of the natural world, help shape assessments of the veracity of a priori predictions about ecological trends and phenomena, and underpin questioning of effectiveness of resource management. Despite the importance of ecological surprises, major gaps in understanding remain about how studies might be done differently or done better to improve the ability to identify them. We outline the kinds of ecological surprises that have arisen from long-term research programs that we lead in markedly different ecosystems around the world. Based on these case studies, we identify important lessons to guide both existing studies and new investigations to detect ecological surprises more readily, better anticipate unusual ecological phenomena, and take proactive steps to plan for and alleviate “undesirable” ecological surprises. Some of these lessons include: (i) maintain existing, and instigate new, long-term studies; (ii) conduct a range of kinds of parallel and concurrent research in a given target area; (iii) better use past literature and conceptual models of the target ecosystem in posing good questions and developing hypotheses and alternative hypotheses; and (iv) increase the capacity for ecological research to take advantage of opportunities arising from major natural disturbances. We argue that the increased anticipatory capability resulting from these lessons is critical given that ecological surprises may become more prevalent because of climate change and multiple and interacting environmental stressors.

Read More…

Impacts of climate warming on terrestrial ectotherms across latitude

he impact of anthropogenic climate change on terrestrial organ- isms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describ- ing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are rela- tively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal toler- ance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest. biodiversity 􏰂 fitness 􏰂 global warming 􏰂 physiology 􏰂 tropical

Read More…

Fluvial landscapes of the Harappan civilization

The collapse of the Bronze Age Harappan, one of the earliest urban civilizations, remains an enigma. Urbanism flourished in the western region of the Indo-Gangetic Plain for approximately 600 y, but since approximately 3,900 y ago, the total settled area and settlement sizes declined, many sites were abandoned, and a significant shift in site numbers and density towards the east is recorded. We report morphologic and chronologic evidence indicating that flu- vial landscapes in Harappan territory became remarkably stable during the late Holocene as aridification intensified in the region after approximately 5,000 BP. Upstream on the alluvial plain, the large Himalayan rivers in Punjab stopped incising, while down- stream, sedimentation slowed on the distinctive mega-fluvial ridge, which the Indus built in Sindh. This fluvial quiescence suggests a gradual decrease in flood intensity that probably stimulated intensive agriculture initially and encouraged urbanization around 4,500 BP. However, further decline in monsoon precipitation led to conditions adverse to both inundation- and rain-based farming. Contrary to earlier assumptions that a large glacier-fed Himalayan river, identi- fied by some with the mythical Sarasvati, watered the Harappan heartland on the interfluve between the Indus and Ganges basins, we show that only monsoonal-fed rivers were active there during the Holocene. As the monsoon weakened, monsoonal rivers gradu- ally dried or became seasonal, affecting habitability along their courses. Hydroclimatic stress increased the vulnerability of agricultural production supporting Harappan urbanism, leading to settlement downsizing, diversification of crops, and a drastic increase in settlements in the moister monsoon regions of the upper Punjab, Haryana, and Uttar Pradesh. Indus Valley ∣ floods ∣ droughts ∣ climate change ∣ archaeology

Read More…

Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought

Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community- wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987– 2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defolia- tion in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defolia- tion trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species- specific responses to climate change–driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage. extreme events | earth system feedbacks | ecological networks | global change | Mediterranean biome

Read More…

Satellite methods underestimate indirect climate forcing by aerosols

Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (Nc) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of Nc. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmo- sphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for lnðNc Þ versus lnðAODÞ derived from PD results do not represent the atmo- spheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for Nc. Using lnðNcÞ versus lnðAIÞ (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for Nc provides estimates for Nc and forcing that are closer to the values predicted by the model. Never- theless, the AIE using lnðNcÞ versus lnðAIÞ may be substantially incorrect on a regional basis and may underestimate or overesti- mate the global average forcing by 25 to 35%.

Read More…

Global water resources affected by human interventions and climate change

Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multi- model approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. ISI-MIP | WaterMIP

Read More…

Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States

Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environ- mental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal- based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion—that beef production demands about 1 order of magnitude more resources than alternative livestock categories—is robust under existing uncertainties. The study thus elu- cidates the multiple environmental benefits of potential, easy-to- implement dietary changes, and highlights the uniquely high re- source demands of beef. food impact | foodprint | geophysics of agriculture | multimetric analysis

Read More…

Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011

As the Earth’s third pole, the Tibetan Plateau has experienced a pronounced warming in the past decades. Recent studies reported that the start of the vegetation growing season (SOS) in the Plateau showed an advancing trend from 1982 to the late 1990s and a delay from the late 1990s to 2006. However, the findings regard- ing the SOS delay in the later period have been questioned, and the reasons causing the delay remain unknown. Here we explored the alpine vegetation SOS in the Plateau from 1982 to 2011 by integrating three long-term time-series datasets of Normalized Difference Vegetation Index (NDVI): Global Inventory Modeling and Mapping Studies (GIMMS, 1982–2006), SPOT VEGETATION (SPOT-VGT, 1998–2011), and Moderate Resolution Imaging Spec- troradiometer (MODIS, 2000–2011). We found GIMMS NDVI in 2001–2006 differed substantially from SPOT-VGT and MODIS NDVIs and may have severe data quality issues in most parts of the western Plateau. By merging GIMMS-based SOSs from 1982 to 2000 with SPOT-VGT–based SOSs from 2001 to 2011 we found the alpine vegetation SOS in the Plateau experienced a continuous advancing trend at a rate of ∼1.04 d·y−1 from 1982 to 2011, which was consistent with observed warming in springs and winters. The satellite-derived SOSs were proven to be reliable with observed phenology data at 18 sites from 2003 to 2011; however, comparison of their trends was inconclusive due to the limited temporal coverage of the observed data. Longer-term observed data are still needed to validate the phenology trend in the future.

Read More…

The material footprint of nations

Metrics on resource productivity currently used by governments suggest that some developed countries have increased the use of natural resources at a slower rate than economic growth (relative decoupling) or have even managed to use fewer resources over time (absolute decoupling). Using the material footprint (MF), a consumption-based indicator of resource use, we find the contrary: Achievements in decoupling in advanced economies are smaller than reported or even nonexistent. We present a time series analysis of the MF of 186 countries and identify material flows associated with global production and consumption networks in unprecedented specificity. By calculating raw material equivalents of international trade, we demonstrate that countries’ use of nondomestic resources is, on average, about threefold larger than the physical quantity of traded goods. As wealth grows, countries tend to reduce their domestic portion of materials extraction through international trade, whereas the overall mass of material consumption generally increases. With every 10% increase in gross domestic product, the average national MF increases by 6%. Our findings call into question the sole use of current resource productivity indicators in policy making and suggest the necessity of an additional focus on consumption- based accounting for natural resource use. raw material consumption | multiregion input–output analysis | sustainable resource management

Read More…

Water-controlled wealth of nations

Population growth is in general constrained by food production, which in turn depends on the access to water resources. At a country level, some populations use more water than they control because of their ability to import food and the virtual water required for its production. Here, we investigate the dependence of demographic growth on available water resources for exporting and importing nations. By quantifying the carrying capacity of nations on the basis of calculations of the virtual water available through the food trade network, we point to the existence of a global water unbalance. We suggest that current export rates will not be maintained and consequently we question the long-term sustainability of the food trade system as a whole. Water-rich regions are likely to soon reduce the amount of virtual water they export, thus leaving import-dependent regions without enough water to sustain their populations. We also investigate the potential impact of possible scenarios that might mitigate these effects through (i) cooperative interactions among nations whereby water-rich countries main- tain a tiny fraction of their food production available for export, (ii ) changes in consumption patterns, and (iii ) a positive feedback between demographic growth and technological innovations. We find that these strategies may indeed reduce the vulnerability of water-controlled societies.

Read More…

The elephant, the blind, and the intersectoral intercomparison of climate impacts

1st paragraph: When decision makers discuss anthropogenic climate change, they often ignore the mighty elephant in the room, namely the question of what global warming really means on the ground. By all accounts, the impacts on our physical environment and society would be starkly different if our planet warmed by “just” 2 °C (1, 2), by a “dangerous” 4 °C (3), or by a “mind-boggling” 6–8 °C (4). However, the pictures of those sweltering worlds that are emerging from scientific research are still regrettably vague, blurred, and fragmentary (see, for example, refs. 5–7). The main reason for this vagueness is as obvious as it is tantalizing: the sheer diversity and complexity of potential climate-change effects on the existing multitude of regions, sectors, and cultures make the swift advancement of robust knowl- edge in this field extremely challenging.

Read More…

Hot climates, high sensitivity

Concluding paragraph: One sure solution to the problem posed by uncertainty of climate sensitivity in hot climates is simply not to go there. Unfortunately, it looks increasingly like Nature will step in to answer some of our questions for us, and I doubt we’ll like the answer. The highest emission scenario currently being considered by the Intergovernmental Panel on Climate Change is Representative Concentration Pathway 8.5 (8), which would bring CO2 concentrations up to 2,000 ppm, which is in the upper reaches of the range considered in ref. 2. Even this scenario can be considered somewhat optimistic, in that it assumes that the annual growth in CO emissions rate (which has been hovering around 3% for decades) will tail off by 2060 and that the emissions rate will cease growing altogether by 2100, whereafter emissions will trend to zero; unrestrained growth could eas- ily dump twice as much carbon into the atmosphere. It is not known if there are actually enough recoverable fossil fuels to emit that much CO2. Hoping that we run out of fossil fuels before bringing on a climate catastrophe does not seem like sound climate policy, but at present it seems to be the only one we have.

Read More…