Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / NRCS Conservation Practices and Materials

NRCS Conservation Practices and Materials

Survey - Programmatic and Operational

Survey 2 of 6 for Appalachian LCC Steering Committee Members.

Read More…

Steering Committee Member Profiles

Steering Committee Member Profiles

Bios of all Steering Committee members and alternates in 2016.

Read More…

Forest Service Honored for Leadership in Promoting Climate Change Adaptation

For their outstanding work in raising awareness and addressing the impacts of climate change on the nation’s natural resources, the Forest Service was honored today as the first-ever recipients of the Climate Adaption Leadership Award for Natural Resources.

Read More…

A Stream Classification for the Appalachian LCC PDF

A Stream Classification for the Appalachian LCC PDF

A classification system and map was developed for stream and river systems in the Appalachian LCC region, encompassing parts of 17 states. The product is intended to complement state-based stream classifications by unifying them into a single consistent system that represents the region’s natural flowing-water aquatic habitats. The results can be used to understand ecological flow relationships and inform conservation planning for aquatic biodiversity in the region.

Read More…

Core Team Meeting Notes, 10-01-2015

Notes/summary from October 2015 Core Team Meeting

Read More…

Sustainable Development under Population Pressure: Lessons from Developed Land Consumption in the Conterminous U.S.

Population growth will result in a significant anthropogenic environmental change worldwide through increases in developed land (DL) consumption. DL consumption is an important environmental and socioeconomic process affecting humans and ecosystems. Attention has been given to DL modeling inside highly populated cities. However, modeling DL consump- tion should expand to non-metropolitan areas where arguably the environmental consequences are more significant. Here, we study all counties within the conterminous U.S. and based on satellite-derived product (National Land Cover Dataset 2001) we calculate the associated DL for each county. By using county population data from the 2000 census we present a comparative study on DL consumption and we propose a model linking population with expected DL consumption. Results indicate distinct geographic patterns of comparatively low and high consuming counties moving from east to west. We also demonstrate that the relationship of DL consumption with population is mostly linear, altering the notion that expected population growth will have lower DL consumption if added in counties with larger population. Added DL consumption is independent of a county’s starting population and only dependent on whether the county belongs to a Metropolitan Statistical Area (MSA). In the overlapping MSA and non-MSA population range there is also a constant DL efficiency gain of approximately 20km2 for a given population for MSA counties which suggests that transitioning from rural to urban counties has significantly higher benefits in lower populations. In addition, we analyze the socioeconomic composition of counties with extremely high or low DL consumption. High DL consumption counties have statistically lower Black/ African American population, higher poverty rate and lower income per capita than average in both NMSA and MSA counties. Our analysis offers a baseline to investigate further land consumption strategies in anticipation of growing population pressures.

Read More…

Achievable future conditions as a framework for guiding forest conservation and management

Achievable future conditions as a framework for guiding forest conservation and management

We contend that traditional approaches to forest conservation and management will be inadequate given the predicted scale of social-economic and biophysical changes in the 21st century. New approaches, focused on anticipating and guiding ecological responses to change, are urgently needed to ensure the full value of forest ecosystem services for future generations. These approaches acknowledge that change is inevitable and sometimes irreversible, and that maintenance of ecosystem services depends in part on novel ecosystems, i.e., species combinations with no analog in the past. We propose that ecological responses be evaluated at landscape or regional scales using risk-based approaches to incorporate uncer- tainty into forest management efforts with subsequent goals for management based on Achievable Future Conditions (AFC). AFCs defined at a landscape or regional scale incorporate advancements in ecosystem management, including adaptive approaches, resilience, and desired future conditions into the context of the Anthropocene. Inherently forward looking, ACFs encompass mitigation and adaptation options to respond to scenarios of projected future biophysical, social-economic, and policy conditions which distribute risk and provide diversity of response to uncertainty. The engagement of science- management-public partnerships is critical to our risk-based approach for defining AFCs. Robust moni- toring programs of forest management actions are also crucial to address uncertainty regarding species distributions and ecosystem processes. Development of regional indicators of response will also be essen- tial to evaluate outcomes of management strategies. Our conceptual framework provides a starting point to move toward AFCs for forest management, illustrated with examples from fire and water management in the Southeastern United States. Our model is adaptive, incorporating evaluation and modification as new information becomes available and as social–ecological dynamics change. It expands on established principles of ecosystem management and best management practices (BMPs) and incorporates scenarios of future conditions. It also highlights the potential limits of existing institutional structures for defining AFCs and achieving them. In an uncertain future of rapid change and abrupt, unforeseen transitions, adjustments in management approaches will be necessary and some actions will fail. However, it is increasingly evident that the greatest risk is posed by continuing to implement strategies inconsistent with current understanding of our novel future.

Read More…

Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States

Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mecha- nistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20–56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40–60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands.

Read More…

From sink to source: Regional variation in U.S. forest carbon futures

The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests’ current net sequestration of atmospheric C to be 173 Tg yr−1, offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112Tg yr−1) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests’ role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

Read More…

Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions

the u.s. department of agriculture (usda)-natural resources conservation service (nrcs) uses an ecological site description (esd) framework to help incorporate interactions between local soil, climate, flora, fauna, and humans into schema for land management decision-making. we demonstrate esd and digital soil mapping tools to (i) estimate potential o horizon carbon (c) stock accumulation from restoring alternative ecological states in high-elevation forests of the central appalachian Mountains in west Virginia (wV), usa, and (ii) map areas in alternative ecological states that can be targeted for restoration. this region was extensively disturbed by clear-cut harvests and related fires during the 1880s through 1930s. we combined spodic soil property maps, recently linked to historic red spruce–eastern hemlock (Picea rubens–Tsuga canadensis) forest communities, with current forest inventories to provide guidance for restoration to a historic reference state. this allowed mapping of alternative hardwood states within areas of the spodic shale uplands conifer forest (scF) ecological site, which is mapped along the regional conifer-hardwood transition of the central appalachian Mountains. Plots examined in these areas suggest that many of the spruce-hemlock dominated stands in wV converted to a hardwood state by historic disturbance have lost at least 10 cm of o horizon thickness, and possibly much more. Based on this 10 cm estimate, we calculate that at least 3.74 to 6.62 tg of c were lost from areas above 880 m elevation in wV due to historic disturbance of o horizons, and that much of these stocks and related ecosystem functions could potentially be restored within 100 yr under focused management, but more practical scenarios would likely require closer to 200 yr.

Read More…

Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions

the u.s. department of agriculture (usda)-natural resources conservation service (nrcs) uses an ecological site description (esd) framework to help incorporate interactions between local soil, climate, flora, fauna, and humans into schema for land management decision-making. we demonstrate esd and digital soil mapping tools to (i) estimate potential o horizon carbon (c) stock accumulation from restoring alternative ecological states in high-elevation forests of the central appalachian Mountains in west Virginia (wV), usa, and (ii) map areas in alternative ecological states that can be targeted for restoration. this region was extensively disturbed by clear-cut harvests and related fires during the 1880s through 1930s. we combined spodic soil property maps, recently linked to historic red spruce–eastern hemlock (Picea rubens–Tsuga canadensis) forest communities, with current forest inventories to provide guidance for restoration to a historic reference state. this allowed mapping of alternative hardwood states within areas of the spodic shale uplands conifer forest (scF) ecological site, which is mapped along the regional conifer-hardwood transition of the central appalachian Mountains. Plots examined in these areas suggest that many of the spruce-hemlock dominated stands in wV converted to a hardwood state by historic disturbance have lost at least 10 cm of o horizon thickness, and possibly much more. Based on this 10 cm estimate, we calculate that at least 3.74 to 6.62 tg of c were lost from areas above 880 m elevation in wV due to historic disturbance of o horizons, and that much of these stocks and related ecosystem functions could potentially be restored within 100 yr under focused management, but more practical scenarios would likely require closer to 200 yr.

Read More…

Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions

Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions

the u.s. department of agriculture (usda)-natural resources conservation service (nrcs) uses an ecological site description (esd) framework to help incorporate interactions between local soil, climate, flora, fauna, and humans into schema for land management decision-making. we demonstrate esd and digital soil mapping tools to (i) estimate potential o horizon carbon (c) stock accumulation from restoring alternative ecological states in high-elevation forests of the central appalachian Mountains in west Virginia (wV), usa, and (ii) map areas in alternative ecological states that can be targeted for restoration. this region was extensively disturbed by clear-cut harvests and related fires during the 1880s through 1930s. we combined spodic soil property maps, recently linked to historic red spruce–eastern hemlock (Picea rubens–Tsuga canadensis) forest communities, with current forest inventories to provide guidance for restoration to a historic reference state. this allowed mapping of alternative hardwood states within areas of the spodic shale uplands conifer forest (scF) ecological site, which is mapped along the regional conifer-hardwood transition of the central appalachian Mountains. Plots examined in these areas suggest that many of the spruce-hemlock dominated stands in wV converted to a hardwood state by historic disturbance have lost at least 10 cm of o horizon thickness, and possibly much more. Based on this 10 cm estimate, we calculate that at least 3.74 to 6.62 tg of c were lost from areas above 880 m elevation in wV due to historic disturbance of o horizons, and that much of these stocks and related ecosystem functions could potentially be restored within 100 yr under focused management, but more practical scenarios would likely require closer to 200 yr.

Read More…

Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams

Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water tem- perature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species’ distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions.

Read More…

Climate Change Vulnerability Assessment of Species of Concern in West Virginia

Elizabeth Byers and Sam Norris. 2011. Climate change vulnerability assessment of species of concern in West Virginia. West Virginia Division of Natural Resources, Elkins, WV. This project assessed and ranked the relative climate change vulnerability of 185 animal and plant species in West Virginia.

Read More…

Climate Change Vulnerability Assessment of Species of Concern in West Virginia

Elizabeth Byers and Sam Norris. 2011. Climate change vulnerability assessment of species of concern in West Virginia. West Virginia Division of Natural Resources, Elkins, WV. This project assessed and ranked the relative climate change vulnerability of 185 animal and plant species in West Virginia.

Read More…

Assessing the Potential Effects of Climate Change on Species in the Cumberland Piedmont Network of the National Park Service

Assessing the Potential Effects of Climate Change on Species in the Cumberland Piedmont Network of the National Park Service

In this study, we evaluate the climate change vulnerability of a subset of key species found in the Cumberland Piedmont Network (CUPN) of the National Park Service (NPS), an ecologically important and diverse region. We developed a list of species of conservation concern (globally and sub-nationally) within each of the fourteen NPS units in the CUPN. Next, we employed NatureServe’s Climate Change Vulnerability Index (CCVI) in order to determine which of those species may be most vulnerable to climate change, based on each species’ 1) direct exposure to climate change, 2) indirect exposure to climate change, 3) sensitivity, and 4) documented/ modeled response to climate change. CCVI results showed a range of vulnerability scores among taxonomic groups, including high vulnerability for mollusks and low vulnerability for migrant songbirds. Furthermore, we found that species of conservation concern were not necessarily those most vulnerable to climate change.

Read More…

Assessing the Potential Effects of Climate Change on Species in the Cumberland Piedmont Network of the National Park Service

Assessing the Potential Effects of Climate Change on Species in the Cumberland Piedmont Network of the National Park Service

In this study, we evaluate the climate change vulnerability of a subset of key species found in the Cumberland Piedmont Network (CUPN) of the National Park Service (NPS), an ecologically important and diverse region. We developed a list of species of conservation concern (globally and sub-nationally) within each of the fourteen NPS units in the CUPN. Next, we employed NatureServe’s Climate Change Vulnerability Index (CCVI) in order to determine which of those species may be most vulnerable to climate change, based on each species’ 1) direct exposure to climate change, 2) indirect exposure to climate change, 3) sensitivity, and 4) documented/ modeled response to climate change. CCVI results showed a range of vulnerability scores among taxonomic groups, including high vulnerability for mollusks and low vulnerability for migrant songbirds. Furthermore, we found that species of conservation concern were not necessarily those most vulnerable to climate change.

Read More…

Natural Resources Conservation Service

NRCS provides America's farmers and ranchers with financial and technical assistance to voluntarily put conservation on the ground, not only helping the environment but agricultural operations too.

Read More…

Steering Committee Meeting Participants

List of those who attended the 2015 Appalachian LCC Steering Committee Meeting.

Read More…