Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Climate Science PDFs

Climate Science PDFs

Climate Science PDFs Collection
Importance of matrix habitats in maintaining biological diversity
Matrix management matters because formal reserve systems will never cover more than a small fraction of the globe.
Effect of habitat area and isolation on fragmented animal populations
Habitat destruction has driven many once-contiguous animal populations into remnant patches of varying size and isolation. The underlying framework for the conservation of fragmented popu- lations is founded on the principles of island biogeography, wherein the probability of species occurrence in habitat patches varies as a function of patch size and isolation. Despite decades of research, the general importance of patch area and isolation as predictors of species occupancy in fragmented terrestrial systems remains unknown because of a lack of quantitative synthesis. Here, we compile occupancy data from 1,015 bird, mammal, reptile, amphibian, and invertebrate population networks on 6 continents and show that patch area and isolation are surprisingly poor predictors of occupancy for most species. We examine factors such as improper scaling and biases in species representation as expla- nations and find that the type of land cover separating patches most strongly affects the sensitivity of species to patch area and isolation. Our results indicate that patch area and isolation are indeed important factors affecting the occupancy of many species, but properties of the intervening matrix should not be ignored. Improving matrix quality may lead to higher conservation returns than manipulating the size and configuration of remnant patches for many of the species that persist in the aftermath of habitat destruction. incidence function 􏰂 island biogeography 􏰂 logistic regression 􏰂 metaanalysis 􏰂 occupancy
The impact of climate change on mental health
Climate change will shortly be assuming centre stage when Copenhagen hosts the United Nations Climate Change Conference in early December 2009. In Copenhagen, delegates will discuss the international response to climate change (i.e. the ongoing increase in the Earth’s average surface temperature) and the meeting is widely viewed as the most important of its kind ever held (http://en.cop15.dk/). International agreement will be sought on a treaty to replace the 1997 Kyoto Protocol. At the time of writing it is not known whether agreement will be reached on the main issues of reducing greenhouse gas emissions and financing the impacts of climate change, and it appears that the impact of climate change on mental health is unlikely to be on the agenda. We discuss here how climate change could have consequences for global mental health and consider the implications for future research and policy. Key words : Climate, mental disorder, mental health, global warming.
The New Era Of Climate Risk Disclosure
In February of this year, the U.S. Securities and Exchange Commission made clear in no uncertain terms that corporations have a duty to disclose risks faced through poten- tial climate change. Yet many boards remain unaware of what constitutes a “material” climate risk, or just how broad the scope and potential impact truly are.
Effects of Urbanization and Climate Change on Stream Health
Estimation of stream health involves the analysis of changes in aquatic species, riparian vegetation, microinvertebrates, and channel degradation due to hydrologic changes occurring from anthropogenic activities. In this study, we quantified stream health changes arising from urbanization and climate change using a combination of the widely accepted Indicators of Hydrologic Alteration (IHA) and Dundee Hydrologic Regime Assessment Method (DHRAM) on a rapidly urbanized watershed in the Dallas-Fort Worth metropolitan area in Texas. Historical flow data were split into pre-alteration and post-alteration periods. The influence of climate change on stream health was analyzed by dividing the precipitation data into three groups of dry, average, and wet conditions based on recorded annual precipitation. Hydrologic indicators were evaluated for all three of the climate scenarios to estimate the stream health changes brought about by climate change. The effect of urbanization on stream health was analyzed for a specific subwatershed where urbanization occurred dramatically but no stream flow data were available using the widely used watershed-scale Soil and Water Assessment Tool (SWAT) model. The results of this study identify negative impacts to stream health with increasing urbanization and indicate that dry weather has more impact on stream health than wet weather. The IHA-DHRAM approach and SWAT model prove to be useful tools to estimate stream health at the watershed scale.
Can a collapse of global civilization be avoided?
Environmental problems have contributed to numerous collapses of civilizations in the past. ... But today, for the first time, humanity’s global civilization—the worldwide,increasingly interconnected, highly technological society in which we all are to one degree or another, embedded—is threatened with collapse by an array of environmental problems. Humankind finds itself engaged in what Prince Charles described as ‘an act of suicide on a grand scale’ [4], facing what the UK’s Chief Scientific Advisor John Beddington called a ‘perfect storm’ of environmental problems [5]. The most serious of these problems show signsof rapidly escalating severity, especially climate disruption.
Climate Change and Existing Law: A Survey of Legal Issues Past, Present, and Future
Summary: This report surveys existing law for legal issues that have arisen, or may arise in the future, on account of climate change and government responses thereto. At the threshold of many climate-change-related lawsuits are two barriers—whether the plaintiff has standing to sue and whether the claim being made presents a political question. Both barriers have forced courts to apply amorphous standards in a new and complex context. Efforts to mitigate climate change—that is, reduce greenhouse gas (GHG) emissions—have spawned a host of legal issues. The Supreme Court resolved a big one in 2007: the Clean Air Act (CAA), it said, authorizes EPA to regulate GHG emissions. EPA’s subsequent efforts to carry out that authority have been sustained by the D.C. Circuit. Another issue is whether EPA’s “endangerment finding” for GHG emissions from new motor vehicles will compel EPA to move against GHG emissions from other sources, and, if EPA does, whether the CAA authorizes cap- and-trade programs. Still other mitigation issues are (1) the role of the Endangered Species Act in addressing climate change; (2) how climate change must be considered under the National Environmental Policy Act; (3) liability and other questions raised by carbon capture and sequestration; (4) constitutional constraints on land use regulation and state actions to control GHG emissions; and (5) whether the public trust doctrine applies to the atmosphere. Liability for harms allegedly caused by climate change has raised another crop of legal issues. The Supreme Court decision that the CAA bars federal judges from imposing their own limits on GHG emissions from power plants has led observers to ask: Can plaintiffs alleging climate change harms still seek monetary damages, and are state law claims still allowed? The two rulings so far say no to the former, but split on the latter. Questions of insurance policy coverage are also likely to be litigated. Finally, the applicability of international law principles to climate change has yet to be resolved.Water shortages thought to be induced by climate change likely will lead to litigation over the nature of water rights. Shortages have already prompted several lawsuits over whether cutbacks in water delivered from federal projects effect Fifth Amendment takings or breaches of contract. Sea level rise and extreme precipitation linked to climate change raise questions as to (1) the effect of sea level rise on the beachfront owner’s property line; (2) whether public beach access easements migrate with the landward movement of beaches; (3) design and operation of federal levees; and (4) government failure to take preventive measures against climate change harms. Other adaptation responses to climate change raising legal issues, often property rights related, are beach armoring (seawalls, bulkheads, etc.), beach renourishment, and “retreat” measures. Retreat measures seek to move existing development away from areas likely to be affected by floods and sea level rise, and to discourage new development there. Natural disasters to which climate change contributes may prompt questions as to whether response actions taken in an emergency are subject to relaxed requirements and, similarly, as to the rebuilding of structures destroyed by such disasters just as they were before. Finally, immigration and refugee law appear not to cover persons forced to relocate because of climate change impacts such as drought or sea level rise.
Are There Rebound Effects from Energy Efficiency? – An Analysis of Empirical Data, Internal Consistency, and Solutions
Of the rigorously-framed hypotheses claiming that large negative rebounds exist, we measure them against the data, which refute the hypotheses. Rebounds at the end-use level are small and decrease over time. Rebounds at the economy-wide level are trivially small, and might well be a net positive. Jevons himself indicated that the ultimate solution requires a lower standard of living
Identifying refugia from climate change
This article highlights how the loose definition of the term ‘refugia’ has led to discrepancies in methods used to assess the vulnerability of species to the current trend of rising global temperatures. The term ‘refugia’ is commonly used without distinguishing between macrorefugia and microrefugia, ex situ refugia and in situ refugia, glacial and interglacial refugia or refugia based on habitat stability and refugia based on climatic stability. It is not always clear which definition is being used, and this makes it difficult to assess the appropriateness of the methods employed. For example, it is crucial to develop accurate fine-scale climate grids when identifying microrefugia, but coarse-scale macroclimate might be adequate for determining macrorefugia. Similarly, identifying in situ refugia might be more appropriate for species with poor dispersal ability but this may overestimate the extinction risk for good dispersers. More care needs to be taken to properly define the context when referring to refugia from climate change so that the validity of methods and the conservation significance of refugia can be assessed. Keywords Bioclimatic envelope models, climatic stability, conservation biogeography, cryptic refugia, ecological niche models, extinction risk, interglacial refugia, macrorefugia, microclimate, microrefugia.
Refugia: identifying and understanding safe havens for biodiversity under climate change
Identifying and protecting refugia is a priority for conservation under pro- jected anthropogenic climate change, because of their demonstrated ability to facilitate the survival of biota under adverse conditions. Refugia are habitats that components of biodiversity retreat to, persist in and can potentially expand from under changing environmental conditions. However, the study and discussion of refugia has often been ad hoc and descriptive in nature. We therefore: (1) provide a habitat-based concept of refugia, and (2) evaluate methods for the identification of refugia.
Habitat Refugia: A Practical Strategy to Conserve Biodiversity Under Climate Change
As climatic zones shift under climate change, many regions and habitats will slowly become climatically unsuit- able for some of the species that currently inhabit them. The availability of climate refugia - habitats and regions which are buffered from extremes in temperature and fluctuations in water availability, could allow some species to adapt to climate change in-situ, and facilitate dispersal and range shifts for other species. This information sheet explains the concepts behind habitat refugia with specific reference to how refugia can be used to protect and conserve terrestrial biodiversity faced with rapid climate change.
Climate Change Hot Spots Mapped Across the United States
Taking some of the fuzziness out of climate models is revealing the uneven U.S. impact of future global warming; the most severely affected region may be emerging already
Accounting for Environmental Assets
A country can cut down its forests, erode its soils, pollute its aquifers and hunt its wildlife and fisheries to extinction, but its measured income is not affected as these assets disappear. Impoverishment is taken for progress
Carbon Mitigation by Biofuels or by Saving and Restoring Forests?
The carbon sequestered by restoring forests is greater than the emissions avoided by the use of the liquid biofuels.
Large Woody Debris and Salmonid Habitat in the Anchor River Basin, Alaska
A widespread and intense spruce beetle outbreak during the 1990s has killed most of the mature white spruce (Picea glauca) trees across many watersheds in south-central Alaska. To investigate the potential habitat impacts in a salmon stream, we characterized the current abundance and species composition of large woody debris (LWD), examined the linkages between LWD and salmonid habitat, and estimated changes in LWD abundance and associated pool habitat over time. LWD abundance was relatively low (97 pieces/km overall) and varied widely according to riparian vegetation typology, ranging from 15 pieces/km at sites with non- forested riparian zones to 170 pieces/km at sites adjacent to cottonwood forest. LWD provided significant fish cover in pools, especially in cottonwood forest stream reaches. LWD-formed pools were relatively rare (15% of total), but LWD abundance explained much of the variation in pool frequency (r2 = 0.86 in spruce forest reaches) and in the proportion of pool habitats (r2 = 0.85 in cottonwood forest reaches). We project the spruce beetle outbreak to result in a substantial net increase in LWD abundance over a 50-year span, peaking with 243% and 179% increases in LWD abundance for spruce forest and cottonwood forest stream reaches, respectively, in the year 2025. Concurrent with the peak in LWD abundance, our estimates show pool frequency in spruce forest reaches to reach 207% of current levels and the proportion of pools in cottonwood forest reaches to reach 167% of current levels, changes that correspond with substantially increased potential habitat for juvenile salmonids.
Road network density correlated with increased lightning fire incidence in the Canadian western boreal forest
This paper quantifies the influence of anthropogenic linear disturbances on fire ignition frequency in the boreal forests of western Canada. Specifically, we tested if linear features increase the frequency of lightning fires, and whether this relationship is affected by spatial resolution. We considered fires that ignited between 1995 and 2002 within a ∼67 000 km2 region of boreal mixed-wood forest in north-eastern Alberta where linear features are highly abundant and spatially heterogeneous. We constructed Poisson, Negative Binomial and Zero-Inflated Poisson models at two spatial resolutions (∼10 000 and ∼2400 ha), including covariates for linear feature densities, forest composition, weather–lightning indices and geography. We found a positive association between lightning fire frequency and road density; this association was consistent at both spatial resolutions. We suggest this occurs owing to increased availability of flammable fine fuels near roads. The effect was attributable neither to increased detectability of fires proximal to roads by human observers, nor to increased lightning strikes due to metallic infrastructure alongside roads or the topographic characteristics of road location. Our results suggest that, in the face of projected road developments in the region, the potential exists for important changes to the regional fire regime. Further research should elucidate the precise mechanisms in order to develop methods for mitigation.
A holistic approach to climate targets
An assessment of allowable carbon emissions that factors in multiple climate targets finds smaller permissible emission budgets than those inferred from studies that focus on temperature change alone.
Both population size and patch quality affect local extinctions and colonizations
Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size.
Extreme climatic event drives range contraction of a habitat-forming species
Species distributions have shifted in response to global warming in all major ecosystems on the Earth. Despite cogent evidence for these changes, the underlying mechanisms are poorly understood and currently imply gradual shifts. Yet there is an increasing appreciation of the role of discrete events in driving ecological change. We show how a marine heat wave (HW) eliminated a prominent habitat-forming seaweed, Scytothalia dorycarpa, at its warm distribution limit, causing a range contraction of approximately 100km (approx. 5% of its global distribution). Seawater temperatures during the HW exceeded the seaweed’s physiological threshold and caused extirpation of marginal populations, which are unlikely to recover owing to life-history traits and oceanographic processes. Scytothalia dorycarpa is an important canopy-forming seaweed in temperate Australia, and loss of the species at its range edge has caused structural changes at the community level and is likely to have ecosystem-level implications. We show that extreme warming events, which are increasing in magnitude and frequency, can force step-wise changes in species distributions in marine ecosystems. As such, return times of these events have major implications for projections of species distributions and ecosystem structure, which have typically been based on gradual warming trends.
Ecosystem Disturbance, Carbon, and Climate
Models of climate change effects should incorporate land-use changes and episodic disturbances such as fires and insect epidemics.