Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
7 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
American Forage and Grasslands Council Annual Conference 2023
AFGC invites farmers, extension educators, Federal and State agency representatives, researchers, and industry representatives to attend the Annual Conference.
Located in News & Events
Dr. Pat Keyser, Director of the Center for Native Grasslands Management shares his 40+ year knowledge about establishing native warm-season forages.
Located in Training Resources
Webinar: Native Warm-Season Grass Forages and Grazing Management for Bobwhites
Join us for a two-day webinar discussing native warm-season grass forages in the eastern U.S. and integrating grazing management for Northern Bobwhites.
Located in News & Events
File PDF document Alleles underlying larval foraging behaviour influence adult dispersal in nature
The dispersal and migration of organisms have resulted in the colonisation of nearly every possible habitat and ultimately the extraordinary diversity of life. Animal dispersal tendencies are commonly heterogeneous (e.g. long vs. short) and non-random suggesting that phenotypic and genotypic variability between individuals can contribute to population-level heterogeneity in dis- persal. Using laboratory and field experiments, we demonstrate that natural allelic variation in a gene underlying a foraging polymorphism in larval fruit flies (for), also influences their dispersal tendencies as adults. Rover flies (forR; higher foraging activity) have consistently greater dispersal tendencies and are more likely to disperse longer distances than sitter flies (fors; lower foraging activity). Increasing for expression in the brain and nervous system increases dispersal in sitter flies. Our study supports the notion that variation in dispersal can be driven by intrinsic variation in food-dependent search behaviours and confirms that single gene pleiotropic effects can contrib- ute to population-level heterogeneity in dispersal.
Located in Resources / Climate Science Documents
File PDF document Changes in Wind Pattern Alter Albatross Distribution and Life-History Traits
Westerly winds in the Southern Ocean have increased in intensity and moved poleward. Using long-term demographic and foraging records, we show that foraging range in wandering albatrosses has shifted poleward in conjunction with these changes in wind pattern, while their rates of travel and flight speeds have increased. Consequently, the duration of foraging trips has decreased, breeding success has improved, and birds have increased in mass by more than 1 kilogram. These positive consequences of climate change may be temporary if patterns of wind in the southern westerlies follow predicted climate change scenarios. This study stresses the importance of foraging performance as the key link between environmental changes and population processes.
Located in Resources / Climate Science Documents
File PDF document Animal migration amid shifting patterns of phenology and predation: lessons from a Yellowstone elk herd
Migration is a striking behavioral strategy by which many animals enhance resource acquisition while reducing predation risk. Historically, the demographic benefits of such movements made migration common, but in many taxa the phenomenon is considered globally threatened. Here we describe a long-term decline in the productivity of elk (Cervus elaphus) that migrate through intact wilderness areas to protected summer ranges inside Yellowstone National Park, USA. We attribute this decline to a long-term reduction in the demographic benefits that ungulates typically gain from migration. Among migratory elk, we observed a 21-year, 70% reduction in recruitment and a 4-year, 19% depression in their pregnancy rate largely caused by infrequent reproduction of females that were young or lactating. In contrast, among resident elk, we have recently observed increasing recruitment and a high rate of pregnancy. Landscape-level changes in habitat quality and predation appear to be responsible for the declining productivity of Yellowstone migrants. From 1989 to 2009, migratory elk experienced an increasing rate and shorter duration of green-up coincident with warmer spring–summer temperatures and reduced spring precipitation, also consistent with observations of an unusually severe drought in the region. Migrants are also now exposed to four times as many grizzly bears (Ursus arctos) and wolves (Canis lupus) as resident elk. Both of these restored predators consume migratory elk calves at high rates in the Yellowstone wilderness but are maintained at low densities via lethal management and human disturbance in the year-round habitats of resident elk. Our findings suggest that large-carnivore recovery and drought, operating simultaneously along an elevation gradient, have disproportionately influenced the demography of migratory elk. Many migratory animals travel large geographic distances between their seasonal ranges. Changes in land use and climate that disparately influence such seasonal ranges may alter the ecological basis of migratory behavior, representing an important challenge.
Located in Resources / Climate Science Documents
Organization Quail Forever
Quail Forever is dedicated to the conservation of quail, pheasants and other wildlife through habitat improvements, public awareness, education, and land management policies and programs.
Located in LP Members / Organizations Search