Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
4 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland
It is difficult to obtain fossil data from the 10% of Earth’s terrestrial surface that is covered by thick glaciers and ice sheets, and hence, knowledge of the paleoenvironments of these regions has remained limited. We show that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores, enabling reconstructions of past flora and fauna. We show that high-altitude southern Greenland, currently lying below more than 2 kilometers of ice, was inhabited by a diverse array of conifer trees and insects within the past million years. The results provide direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections.
Located in Resources / Climate Science Documents
File Integration and scaling of UV-B radiation effects on plants: from DNA to leaf
A process-based model integrating the effects of UV-B radiation through epidermis, cellular DNA, and its consequences to the leaf expansion was developed from key parameters in the published literature. Enhanced UV-B radiation- induced DNA damage significantly delayed cell division, resulting in significant reductions in leaf growth and development. Ambient UV-B radiation-induced DNA damage significantly reduced the leaf growth of species with high relative epidermal absorbance at longer wavelengths and average/low pyrimidine cyclob- utane dimers (CPD) photorepair rates. Leaf expansion was highly dependent on the number of CPD present in the DNA, as a result of UV-B radiation dose, quantitative and qualitative absorptive properties of epidermal pigments, and repair mechanisms. Formation of pyrimidine-pyrimidone (6-4) photoproducts (6-4PP) has no effect on the leaf expansion. Repair mechanisms could not solely prevent the UV-B radiation interference with the cell division. Avoidance or effective shielding by increased or modified qualitative epidermal absorptance was required. Sustained increased UV-B radiation levels are more detri-mental than short, high doses of UV-B radiation. The combination of low temperature and increased UV-B radiation was more significant in the level of UV-B radiation-induced damage than UV-B radiation alone. Slow-growing leaves were more affected by increased UV-B radiation than fast-growing leaves.
Located in Resources / Climate Science Documents
The eDNA revolution & developing comprehensive aquatic biodiversity archives
Measuring & understanding the effects of climate change on aquatic life requires an accurate baseline status assessment that can serve as a benchmark for comparisons through time.
Located in News & Events
BIG DATA as an engine for aquatic information creation
The smartest thing, the only thing really, we can do to conserve & preserve fisheries and aquatic biodiversity as the climate warms this century is to invest our limited resources wisely.
Located in News & Events