Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Area–heterogeneity tradeoff and the diversity of ecological communities

Area–heterogeneity tradeoff and the diversity of ecological communities

For more than 50 y ecologists have believed that spatial heterogeneity in habitat conditions promotes species richness by increasing opportunities for niche partitioning. However, a recent stochastic model combining the main elements of niche theory and island biogeography theory suggests that environmental heterogeneity has a general unimodal rather than a positive effect on species richness. This result was explained by an inherent tradeoff between environmental heterogeneity and the amount of suitable area available for individual species: for a given area, as heterogeneity increases, the amount of effective area available for individual species decreases, thereby reducing population sizes and increasing the likelihood of stochastic extinctions. Here we provide a comprehensive evaluation of this hypothesis. First we analyze an extensive database of breeding bird distribution in Catalonia and show that patterns of species richness, species abundance, and extinction rates are consistent with the predictions of the area–heterogeneity tradeoff and its proposed mechanisms. We then perform a metaanalysis of heterogeneity–diversity relationships in 54 published datasets and show that empirical data better fit the unimodal pattern predicted by the area–heterogeneity tradeoff than the positive pattern predicted by classic niche theory. Simulations in which species may have variable niche widths along a continuous environmental gradient are consistent with all empirical findings. The area–heterogeneity tradeoff brings a unique perspective to current theories of species diversity and has important implications for biodiversity conservation.

Credits: PNAS Early Edition www.pnas.org/cgi/doi/10.1073/pnas.1208652109

Fair Use OK

DOWNLOAD FILE — PDF document, 905 kB (927,502 bytes)