Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4417 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
Image Troff document Cultural Landscapes Screenshot
Cultural Landscapes Screenshot
Located in Site Images
Cumberland - Southern Appalachian Climate Change Vulnerability Species Assessments
These results are a compilation of climate change vulnerability assessments in the southeastern portion of the LCC, covering the area from southern West Virginia, south to Alabama, west to eastern Kentucky and Tennessee. Hyperlinks to additional information are separated into two additional spreadsheets, one for aquatic and subterranean, and another for terrestrial species.
Located in Research / / Assessing Vulnerability of Species and Habitats to Large-scale Impacts / Vulnerability Assessment Foundational Data by Subregion
File PDF document Cummings 1991.pdf
Located in Resources / TRB Library / COO-CVA
File PDF document Cummings 1995.pdf
Located in Resources / TRB Library / COO-CVA
File PDF document Cummings Berlocher 1990.pdf
Located in Resources / TRB Library / COO-CVA
File PDF document Cummings et al 1997.pdf
Located in Resources / TRB Library / COO-CVA
File PDF document Cummings Governors Conference.pdf
Located in Resources / TRB Library / COO-CVA
File PDF document Cummings Mayer 1993.pdf
Located in Resources / TRB Library / COO-CVA
File PDF document Cumulative Effects of Fire and Fuels Management on Stream Water Quality and Ecosystem Dynamics
Prescribed fires and wildland fire-use are increasingly important management tools used to reduce fuel loads and restore the ecological integrity of western forests. Although a basic understanding of the effects of fire on aquatic ecosystems exists, the cumulative and possibly synergistic effects of wildfire following prescribed fire are unknown. Wildfires following prescribed fire may produce different burn severities and effects on riparian and stream ecosystems than wildfires in fire suppressed forests (e.g., fires absent >70 yrs) or prescribed fires alone. The goal of this study was to quantify and compare the effects of wildfire on stream and riparian ecosystems under three fire management practices: (1) wildfire following prescribed fire, (2) wildfire in fire suppressed forests, and (3) wildfire occurring at historic fire return intervals. We compared 6-7 years (2001-2006/07) of stream and riparian data collected prior to two large wildfire events to 3 years (2008-2010) of similar data collected after wildfire in catchments along the South Fork Salmon River and Big Creek in central Idaho. Here we report our preliminary findings on riparian- and catchment-level burn severity patterns, riparian forest structure, hydrology, amphibians, aquatic macroinvertebrates, periphyton, and instream habitat, including temperature, chemistry, substrate, sedimentation, and large woody debris. We found that the management practice of prescribed fire treatment prior to wildfire significantly reduced wildfire burn severity patterns in treated catchments relative to untreated catchments. This reduction in burn severity appeared to reduce wildfire effects on stream and riparian ecosystems rather than cause cumulative effects of prescribed fire plus wildfire. Instead, we found that the effects of natural inter-annual variability in stream flow and stochastic disturbances, such as debris flows and channel scouring events, are the dominant drivers of change in stream and riparian habitats in this region, with fire management practices playing a much smaller role.
Located in Resources / Climate Science Documents
File PDF document Cunjak McGladdery 1991.pdf
Located in Resources / TRB Library / COO-CVA