Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Clench 1926.pdf
Located in Resources / TRB Library / CLA-COO
File PDF document Clench Boss 1967.pdf
Located in Resources / TRB Library / CLA-COO
File PDF document Clench Latin Names.pdf
Located in Resources / TRB Library / CLA-COO
Climate and Conservation Coffee
Join others in the Triangle area landscape conservation and climate change community for coffee and conversation on the 1st Thursday of each month at 9 am. In June, let’s meet at Cup a Joe in Mission Valley shopping center, probably at one of the outside tables. This is a new format for what used to be the Triangle Climate and Landscape Researchers’ Brown Bag lunch
Located in News & Events / Events / Upload New Events
File PDF document Climate change and disruptions to global fire activity
Future disruptions to fire activity will threaten ecosystems and human well-being throughout the world, yet there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From the ensemble results, we identify areas of consensus for increases or decreases in fire activity, as well as areas where GCMs disagree. Although certain biomes are sensitive to constraints on biomass productivity and others to atmospheric conditions promoting combustion, substantial and rapid shifts are projected for future fire activity across vast portions of the globe. In the near term, the most consistent increases in fire activity occur in biomes with already somewhat warm climates; decreases are less pronounced and concentrated primarily in a few tropical and subtropical biomes. However, models do not agree on the direction of near- term changes across more than 50% of terrestrial lands, highlighting major uncertainties in the next few decades. By the end of the century, the magnitude and the agreement in direction of change are projected to increase substantially. Most far-term model agreement on increasing fire probabilities (;62%) occurs at mid- to high-latitudes, while agreement on decreasing probabilities (;20%) is mainly in the tropics. Although our global models demonstrate that long-term environmental norms are very successful at capturing chronic fire probability patterns, future work is necessary to assess how much more explanatory power would be added through interannual variation in climate variables. This study provides a first examination of global disruptions to fire activity using an empirically based statistical framework and a multi-model ensemble of GCM projections, an important step toward assessing fire-related vulnerabilities to humans and the ecosystems upon which they depend. Key words: climatic constraints; ensemble model uncertainty; flammability; global climate models (GCM); GCM agreement; global fire probabilities; resources to burn; spatial statistical models; species distribution models.
Located in Resources / Climate Science Documents
File PDF document Climate Change and Existing Law: A Survey of Legal Issues Past, Present, and Future
Summary: This report surveys existing law for legal issues that have arisen, or may arise in the future, on account of climate change and government responses thereto. At the threshold of many climate-change-related lawsuits are two barriers—whether the plaintiff has standing to sue and whether the claim being made presents a political question. Both barriers have forced courts to apply amorphous standards in a new and complex context. Efforts to mitigate climate change—that is, reduce greenhouse gas (GHG) emissions—have spawned a host of legal issues. The Supreme Court resolved a big one in 2007: the Clean Air Act (CAA), it said, authorizes EPA to regulate GHG emissions. EPA’s subsequent efforts to carry out that authority have been sustained by the D.C. Circuit. Another issue is whether EPA’s “endangerment finding” for GHG emissions from new motor vehicles will compel EPA to move against GHG emissions from other sources, and, if EPA does, whether the CAA authorizes cap- and-trade programs. Still other mitigation issues are (1) the role of the Endangered Species Act in addressing climate change; (2) how climate change must be considered under the National Environmental Policy Act; (3) liability and other questions raised by carbon capture and sequestration; (4) constitutional constraints on land use regulation and state actions to control GHG emissions; and (5) whether the public trust doctrine applies to the atmosphere. Liability for harms allegedly caused by climate change has raised another crop of legal issues. The Supreme Court decision that the CAA bars federal judges from imposing their own limits on GHG emissions from power plants has led observers to ask: Can plaintiffs alleging climate change harms still seek monetary damages, and are state law claims still allowed? The two rulings so far say no to the former, but split on the latter. Questions of insurance policy coverage are also likely to be litigated. Finally, the applicability of international law principles to climate change has yet to be resolved.Water shortages thought to be induced by climate change likely will lead to litigation over the nature of water rights. Shortages have already prompted several lawsuits over whether cutbacks in water delivered from federal projects effect Fifth Amendment takings or breaches of contract. Sea level rise and extreme precipitation linked to climate change raise questions as to (1) the effect of sea level rise on the beachfront owner’s property line; (2) whether public beach access easements migrate with the landward movement of beaches; (3) design and operation of federal levees; and (4) government failure to take preventive measures against climate change harms. Other adaptation responses to climate change raising legal issues, often property rights related, are beach armoring (seawalls, bulkheads, etc.), beach renourishment, and “retreat” measures. Retreat measures seek to move existing development away from areas likely to be affected by floods and sea level rise, and to discourage new development there. Natural disasters to which climate change contributes may prompt questions as to whether response actions taken in an emergency are subject to relaxed requirements and, similarly, as to the rebuilding of structures destroyed by such disasters just as they were before. Finally, immigration and refugee law appear not to cover persons forced to relocate because of climate change impacts such as drought or sea level rise.
Located in Resources / Climate Science Documents
File PDF document Climate change and the ecologist
The evidence for rapid climate change now seems overwhelming. Global temperatures are predicted to rise by up to 4 °C by 2100, with associated alterations in precipitation patterns. Assessing the consequences for biodiversity, and how they might be mitigated, is a Grand Challenge in ecology.
Located in Resources / Climate Science Documents
File PDF document Climate change and the invasion of California by grasses
Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait differences between groups allows us to predict changes in the exotic-native balance under climate change scenarios. Exotic species are more likely to be annual, taller, with larger leaves, larger seeds, higher specific leaf area, and higher leaf N percentage than native species. Across the state, all these traits are associated with regions with higher temperature. Therefore, we predict that increasing temperatures will favor trait states that tend to be possessed by exotic species, increasing the dominance of exotic species. This prediction is corroborated by the current distribution of exotic species richness relative to native richness in California; warmer areas contain higher proportions of exotic species. This pattern was very well captured by a simple model that predicts invasion severity given only the trait–climate relationship for native species and trait differences between native and exotic species. This study provides some of the first evidence for an important interaction between climate change and species invasions across very broad geographic and taxonomic scales.
Located in Resources / Climate Science Documents
File PDF document Climate change and the world economy: short-run determinants of atmospheric CO2
Volcanic eruptions, the El Nin ̃ o Southern oscillation (ENSO), world population, and the world economy are the four variables usually discussed as influencing the short-run changes in CO2 atmospheric levels through their influence on CO2 emissions and sinks. Using proper procedures of detrending, we do not find any observable relation between the short-term growth of world population and the increase of CO2 concentrations. Results suggest that the link between volcanic eruptions, ENSO activity, and CO2 concentrations may be confounded by the coincidence of the Pinatubo eruption with the breakdown of the economies of the Soviet Bloc in the early 1990s. Changes in world GDP (WGDP) have a significant effect on CO2 concentrations, so that years of above-trend WGDP are years of greater rise of CO2 concentrations. Measuring WGDP in constant US dollars of 2000, for each trillion WGDP deviates from trend, the atmospheric CO2 concentration has deviated from trend, in the same direction, about half a part per million.
Located in Resources / Climate Science Documents
File PDF document Climate change and tropical biodiversity: a new focus
Considerable efforts are focused on the consequences of climate change for tropical rainforests. However, potentially the greatest threats to tropical biodiversity (synergistic interactions between climatic changes and human land use) remain understudied. Key concerns are that aridification could increase the accessibility of previously non-arable or remote lands, elevate fire impacts and exacerbate ecological effects of habitat disturbance. The growing climatic change literature often fails to appreciate that, in coming decades, climate–land use interac- tions might be at least as important as abiotic changes per se for the fate of tropical biodiversity. In this review, we argue that protected area expansion along key ecological gradients, regulation of human-lit fires, strategic forest–carbon financing and re-evaluations of agricultural and biofuel subsidies could ameliorate some of these synergistic threats.
Located in Resources / Climate Science Documents