Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Lewis 1870.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Lewis 1984.pdf
Located in Resources / TRB Library / LAR-LEW
File PDF document Lewis 1984.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Lewis 1985.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Lewis New York.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Lewis Riebel 1984.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Libois HalletLibois 1987.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Liechti Huggins 1977.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Life history and spatial traits predict extinction risk due to climate change
There is an urgent need to develop effective vulnerability assessments for evaluating the conservation status of species in a changing climate1. Several new assessment approaches have been proposed for evaluating the vulnerability of species to climate change 2–5 based on the expectation that established assessments such as the IUCN Red List6 need revising or superseding in light of the threat that climate change brings. However, although previous studies have identified ecological and life history attributes that characterize declining species or those listed as threatened7–9, no study so far has undertaken a quantitative analysis of the attributes that cause species to be at high risk of extinction specifically due to climate change. We developed a simulation approach based on generic life history types to show here that extinction risk due to climate change can be predicted using a mixture of spatial and demographic variables that can be measured in the present day without the need for complex forecasting models. Most of the variables we found to be important for predicting extinction risk, including occupied area and population size, are already used in species conservation assessments, indicating that present systems may be better able to identify species vulnerable to climate change than previously thought. Therefore, although climate change brings many new conservation challenges, we find that it may not be fundamentally different from other threats in terms of assessing extinction risks.
Located in Resources / Climate Science Documents
File PDF document Life history predicts risk of species decline in a stochastic world
Understanding what traits determine the extinction risk of species has been a long-standing challenge. Natural populations increasingly experience reductions in habitat and population size concurrent with increasing novel environmental variation owing to anthropogenic disturbance and climate change. Recent studies show that a species risk of decline towards extinction is often non-random across species with differ- ent life histories. We propose that species with life histories in which all stage-specific vital rates are more evenly important to population growth rate may be less likely to decline towards extinction under these pressures. To test our prediction, we modelled declines in population growth rates under simulated stochas- tic disturbance to the vital rates of 105 species taken from the literature. Populations with more equally important vital rates, determined using elasticity analysis, declined more slowly across a gradient of increas- ing simulated environmental variation. Furthermore, higher evenness of elasticity was significantly correlated with a reduced chance of listing as Threatened on the International Union for Conservation of Nature Red List. The relative importance of life-history traits of diverse species can help us infer how natural assemblages will be affected by novel anthropogenic and climatic disturbances. Keywords: International Union for Conservation of Nature Red List; extinction; life history; stage-based; elasticity; stochasticity
Located in Resources / Climate Science Documents