Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Physiological plasticity increases resilience of ectothermic animals to climate change
Understanding how climate change affects natural populations remains one of the greatest challenges for ecology and management of natural resources. Animals can remodel their physiology to compensate for the effects of temperature variation, and this physiological plasticity, or acclimation, can confer resilience to climate change1,2. The current lack of a comprehensive analysis of the capacity for physiological plasticity across taxonomic groups and geographic regions, however, constrains predictions of the impacts of climate change. Here, we assembled the largest database to date to establish the current state of knowledge of physiological plasticity in ectothermic animals. We show that acclimation decreases the sensitivity to temperature and climate change of freshwater and marine animals, but less so in terrestrial animals. Animals from more stable environments have greater capacity for acclimation, and there is a significant trend showing that the capacity for thermal acclimation increases with decreasing latitude. Despite the capacity for acclimation, climate change over the past 20 years has already resulted in increased physiological rates of up to 20%, and we predict further future increases under climate change. The generality of these predictions is limited, however, because much of the world is drastically undersampled in the literature, and these undersampled regions are the areas of greatest need for future research efforts.
Located in Resources / Climate Science Documents
File PDF document Dramatically increasing chance of extremely hot summers since the 2003 European heatwave
Socio-economic stress from the unequivocal warming of the global climate system(1)could be mostly felt by societies through weather and climate extremes (2). The vulnerability of European citizens was made evident during the summer heatwave of 2003 (refs 3,4) when the heat-related death toll ran into tens of thousands (5). Human influence at least doubled the chances of the event according to the first formal event attribution study (6), which also made the ominous forecast that severe heatwaves could become commonplace by the 2040s. Here we investigate how the likelihood of having another extremely hot summer in one of the worst affected parts of Europe has changed ten years after the original study was published, given an observed summer temperature increase of 0.81 K since then. Our analysis benefits from the availability of new observations and data from several new models. Using a previously employed temperature threshold to define extremely hot summers, we find that events that would occur twice a century in the early 2000s are now expected to occur twice a decade. For the more extreme threshold observed in 2003, the return time reduces from thousands of years in the late twentieth century to about a hundred years in little over a decade.
Located in Resources / Climate Science Documents
File PDF document Livelihood resilience in the face of climate change
The resilience concept requires greater attention to human livelihoods if it is to address the limits to adaptation strategies and the development needs of the planet’s poorest and most vulnerable people. Although the concept of resilience is increasingly informing research and policy, its transfer from ecological theory to social systems leads to weak engagement with normative, social and political dimensions of climate change adaptation. A livelihood perspective helps to strengthen resilience thinking by placing greater emphasis on human needs and their agency, empowerment and human rights, and considering adaptive livelihood systems in the context of wider transformational changes.
Located in Resources / Climate Science Documents
File PDF document Global protected area expansion is compromised by projected land-use and parochialism
Protected areas are one of the main tools for halting the continuing global biodiversity crisis1–4 caused by habitat loss, fragmentation and other anthropogenic pressures5–8. According to the Aichi Biodiversity Target 11 adopted by the Convention on Biological Diversity, the protected area network should be expanded to at least 17% of the terrestrial world by 2020 (http://www.cbd.int/sp/targets). To max- imize conservation outcomes, it is crucial to identify the best expan- sion areas. Here we show that there is a very high potential to increase protection of ecoregions and vertebrate species by expanding the pro- tected area network, but also identify considerable risk of ineffective outcomes due to land-use change and uncoordinated actions between countries. We use distribution data for 24,757 terrestrial vertebrates assessed under the International Union for the Conservation of Nature (IUCN) ‘red list of threatened species’9, and terrestrial eco- regions10 (827), modified by land-use models for the present and 2040, and introduce techniques for global and balanced spatial con- servation prioritization. First, we show that with a coordinated global protected area network expansion to 17% of terrestrial land, average protection of species ranges and ecoregions could triple. Second, if projected land-use change by 2040 (ref. 11) takes place, it becomes infeasible to reach the currently possible protection levels, and over 1,000 threatened species would lose more than 50% of their present effective ranges worldwide. Third, we demonstrate a major efficiency gap between national and global conservation priorities. Strong evi- dence is shown that further biodiversity loss is unavoidable unless international action is quickly taken to balance land-use and biodiversity conservation. The approach used here can serve as a framework for repeatable and quantitative assessment of efficiency, gaps and expansion of the global protected area network globally, regionally and nationally, considering current and projected land-use pressures.
Located in Resources / Climate Science Documents
File PDF document Critical slowing down as early warning for the onset of collapse in mutualistic communities
Tipping points are crossed when small changes in external conditions cause abrupt unexpected responses in the current state of a system. In the case of ecological communities under stress, the risk of approaching a tipping point is unknown, but its stakes are high. Here, we test recently developed critical slowing-down indicators as early-warning signals for detecting the proximity to a potential tipping point in structurally complex ecological communities. We use the structure of 79 empirical mutualistic networks to simulate a scenario of gradual environmental change that leads to an abrupt first extinction event followed by a sequence of species losses until the point of complete community collapse. We find that critical slowing-down indicators derived from time series of bio- masses measured at the species and community level signal the proximity to the onset of community collapse. In particular, we identify specialist species as likely the best-indicator species for mon- itoring the proximity of a community to collapse. In addition, trends in slowing-down indicators are strongly correlated to the timing of species extinctions. This correlation offers a promising way for map- ping species resilience and ranking species risk to extinction in a given community. Our findings pave the road for combining theory on tipping points with patterns of network structure that might prove useful for the management of a broad class of ecological networks under global environmental change. resilience | critical transition | mutualism | ecological networks | pollinator decline
Located in Resources / Climate Science Documents
File PDF document Rapid deposition of oxidized biogenic compounds to a temperate forest
We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, satu- rated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We ob- serve that water-soluble compounds (e.g., strong acids and hydro- peroxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbon- yls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffu- sivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m−2·s−1). GEOS−Chem, a widely used atmospheric chemical transport model, currently under- estimates dry deposition for most molecules studied in this work. Reconciling GEOS−Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface con- centration of trace gases. biosphere−atmosphere exchange | isoprene | dry deposition | OVOCs | fluxes
Located in Resources / Climate Science Documents
File PDF document Recovery of large carnivores in Europe’s modern human-dominated landscapes
The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.
Located in Resources / Climate Science Documents
File PDF document Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics
Theory predicts a positive relationship between biodiversity and stability in ecosystem properties, while diversity is expected to have a negative impact on stability at the species level. We used virtual experiments based on a dynamic simulation model to test for the diversity–stability relationship and its underlying mechanisms in Central European forests. First our results show that variability in productivity between stands differing in species composition decreases as species richness and functional diversity increase. Second we show temporal stability increases with increasing diversity due to compensatory dynamics across species, supporting the biodiversity insurance hypothesis. We demonstrate that this pattern is mainly driven by the asynchrony of spe- cies responses to small disturbances rather than to environmental fluctuations, and is only weakly affected by the net biodiversity effect on productivity. Furthermore, our results suggest that com- pensatory dynamics between species may enhance ecosystem stability through an optimisation of canopy occupancy by coexisting species. Keywords Asynchrony, biodiversity, ecosystem functioning, ecosystem predictability, forests, gap model, insurance hypothesis, productivity, stability, structural equation model.
Located in Resources / Climate Science Documents
File PDF document Controls on Annual Forest Carbon Storage: Lessons from the Past and Predictions for the Future
The temperate forests of North America may play an important role in future carbon (C) sequestration strategies. New, multiyear, ecosystem-scale C cycling studies are providing a process-level understanding of the factors controlling annual forest C storage. Using a combination of ecological and meteorological methods, we quantified the response of annual C storage to historically widespread disturbances, forest succession, and climate variation in a common forest type of the upper Great Lakes region. At our study site in Michigan, repeated clear-cut harvesting and fire disturbance resulted in a lasting decrease in annual forest C storage. However, climate variation exerts a strong control on C storage as well, and future climate change may substantially reduce annual C storage by these forests. Annual C storage varies through ecological succession by rising to a maximum and then slowly declining in old-growth stands. Effective forest C sequestration requires the management of all C pools, including traditionally managed pools such as bole wood and also harvest residues and soils. Keywords: forests, carbon, climate change, succession, disturbance
Located in Resources / Climate Science Documents
File PDF document Conservation threats: biofuel
Biofuels: Europe’s largest conservation charity has launched a campaign to heighten the threat to wildlife habitats and biodiversity from plantations of fuel crops. Nigel Williams reports. 1st paragraph: Europe embraced the theoretical potential that biofuels might offer both in terms of climate change and renewable sources of energy, as enthusiastically as anywhere else, but the dawning reality has hit harder here than in many other areas with the realisation that it is a crowded continent with limited scope for home-grown material.
Located in Resources / Climate Science Documents