Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document A long-term association between global temperature and biodiversity, origination and extinction in the fossil record
We analysed the fossil record for the last 520 Myr against estimates of low latitude sea surface temperature for the same period. We found that global biodiversity (the richness of families and genera) is related to temperature and has been relatively low during warm ‘greenhouse’ phases, while during the same phases extinction and origination rates of taxonomic lineages have been relatively high. These findings are consistent for terrestrial and marine environments and are robust to a number of alternative assumptions and potential biases. Our results provide the first clear evidence that global climate may explain substantial variation in the fossil record in a simple and consistent manner. Our findings may have implications for extinction and biodiversity change under future climate warming.
Located in Resources / Climate Science Documents
File PDF document A long-term perspective on a modern drought in the American Southeast
The depth of the 2006–9 drought in the humid, southeastern US left several metropolitan areas with only a 60–120 day water supply. To put the region’s recent drought variability in a long-term perspective, a dense and diverse tree-ring network—including the first records throughout the Apalachicola–Chattahoochee–Flint river basin—is used to reconstruct drought from 1665 to 2010 CE. The network accounts for up to 58.1% of the annual variance in warm-season drought during the 20th century and captures wet eras during the middle to late 20th century. The reconstruction shows that the recent droughts are not unprecedented over the last 346 years. Indeed, droughts of extended duration occurred more frequently between 1696 and 1820. Our results indicate that the era in which local and state water supply decisions were developed and the period of instrumental data upon which it is based are amongst the wettest since at least 1665. Given continued growth and subsequent industrial, agricultural and metropolitan demand throughout the southeast, insights from paleohydroclimate records suggest that the threat of water-related conflict in the region has potential to grow more intense in the decades to come.
Located in Resources / Climate Science Documents
File PDF document A Measurable Planetary Boundary for the Biosphere
Terrestrial net primary (plant) production provides a measurable boundary for human consumption of Earth’s biological resources.
Located in Resources / Climate Science Documents
File PDF document A megacity in a changing climate: the case of Kolkata
Projections by the Intergovernmental Panel on Climate Change suggest that there will be an increase in the frequency and intensity of climate extremes in the 21st century. Kolkata, a megacity in India, has been singled out as one of the urban centers vulnerable to climate risks. Modest flooding during monsoons at high tide in the Hooghly River is a recurring hazard in Kolkata. More intense rainfall, riverine flooding, sea level rise, and coastal storm surges in a changing climate can lead to widespread and severe flooding and bring the city to a standstill for several days. Using rainfall data, high and low emissions scenarios, and sea level rise of 27 cm by 2050, this paper assesses the vulnerability of Kolkata to increasingly intense precipitation events for return periods of 30, 50, and 100 years. It makes location-specific inundation depth and duration projections using hydrological, hydraulic, and urban storm models with geographic overlays. High resolution spatial analysis provides a roadmap for designing adaptation schemes to minimize the impacts of climate change. The modeling results show that de-silting of the main sewers would reduce vulnerable population estimates by at least 5 %.
Located in Resources / Climate Science Documents
A Natural Treasure: Florida's Sandhills & Grasslands
Learn how local and state partners with USDA’s Natural Resources Conservation Service have permanently protected a pristine sandhill grassland ecosystem in north-central Florida from rapidly advancing development.
Located in News & Announcements / WLFW News Inbox
A New Way to Support EBTJV-Shop Select RepYourWater Merchandise to Further our Brook Trout Conservation Efforts
Shop Select RepYourWater Merchandise to Further our Brook Trout Conservation Efforts-The Eastern Brook Trout Joint Venture (EBTJV) is excited to announce its collaboration with RepYourWater, Beyond the Pond, and the Atlantic Coastal Fish Habitat Partnership (ACFHP) to further support fish habitat conservation from whitewater to bluewater.
Located in News & Events
File PDF document A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution Vol. 35
This paper reports on the development and validation of a new, global, burnt area product. Burnt areas are reported at a resolution of 1 km for seven fire years (2000 to 2007). A modified version of a Global Burnt Area (GBA) 2000 algorithm is used to compute global burnt area. The total area burnt each year (2000– 2007) is estimated to be between 3.5 million km2 and 4.5 million km2 . The total amount of vegetation burnt by cover type according to the Global Land Cover (GLC) 2000 product is reported. Validation was undertaken using 72 Landsat TM scenes was undertaken. Correlation statistics between estimated burnt areas are reported for major vegetation types. The accuracy of this new global data set depends on vegetation type.
Located in Resources / Climate Science Documents
File PDF document A paradigm shift in understanding and quantifying the effects of forest harvesting on floods in snow environments
A well-established precept in forest hydrology is that any reduction of forest cover will always have a progressively smaller effect on floods with increasing return period. The underlying logic in snow environments is that during the largest snowmelt events the soils and vegetation canopy have little additional storage capacity and under these conditions much of the snowmelt will be converted to runoff regardless of the amount or type of vegetation cover. Here we show how this preconceived physical understanding, reinforced by the outcomes of numerous paired watershed studies, is indefensible because it is rationalized outside the flood frequency distribution framework. We conduct a meta-analysis of postharvest data at four catchments (3–37 km2) with moderate level of harvesting (33%–40%) to demonstrate how harvesting increases the magnitude and frequency of all floods on record (19–99 years) and how such effects can increase unchecked with increasing return period as a consequence of changes to both the mean (þ11% to þ35%) and standard deviation (􏰁12% to þ19%) of the flood frequency distribution. We illustrate how forest harvesting has substantially increased the frequency of the largest floods in all study sites regardless of record length and this also runs counter to the prevailing wisdom in hydrological science. The dominant process responsible for these newly emerging insights is the increase in net radiation associated with the conversion from longwave-dominated snowmelt beneath the canopy to shortwave-dominated snowmelt in harvested areas, further amplified or mitigated by basin characteristics such as aspect distribution, elevation range, slope gradient, amount of alpine area, canopy closure, and drainage density. Investigating first order environmental controls on flood frequency distributions, a standard research method in stochastic hydrology, represents a paradigm shift in the way harvesting effects are physically explained and quantified in forest hydrology literature.
Located in Resources / Climate Science Documents
The impact of high-grading on forest wildlife in the Eastern deciduous forests.
Located in Online Training Resources / Webinars and Instructional Videos
File PDF document A phylogenetic perspective on the distribution of plant diversity
Phylogenetic studies are revealing that major ecological niches are more conserved through evolutionary history than expected, implying that adaptations to major climate changes have not readily been accomplished in all lineages. Phylogenetic niche conservatism has important consequences for the assembly of both local communities and the regional species pools from which these are drawn. If corridors for movement are available, newly emerging environments will tend to be filled by species that filter in from areas in which the relevant adaptations have already evolved, as opposed to being filled by in situ evolution of these adaptations. Examples include intercontinental disjunctions of tropical plants, the spread of plant lineages around the Northern Hemisphere after the evolution of cold tolerance, and the radiation of northern alpine plants into the Andes. These observations highlight the role of phylogenetic knowledge and historical biogeography in explanations of global biodiversity patterns. They also have implications for the future of biodiversity.
Located in Resources / Climate Science Documents