Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Quantifying the negative feedback of vegetation to greenhouse warming: A modeling approach
Several climate models indicate that in a 2 × CO2 environment, temperature and precipitation would increase and runoff would increase faster than precipitation. These models, however, did not allow the vegetation to increase its leaf density as a response to the physiological effects of increased CO2 and consequent changes in climate. Other assessments included these interactions but did not account for the vegetation down‐regulation to reduce plant’s photosynthetic activity and as such resulted in a weak vegetation negative response. When we combine these interactions in climate simulations with 2 × CO2, the associated increase in precipitation contributes primarily to increase evapotranspiration rather than surface runoff, consistent with observations, and results in an additional cooling effect not fully accounted for in previous simulations with elevated CO2. By accelerating the water cycle, this feedback slows but does not alleviate the projected warming, reducing the land surface warming by 0.6°C. Compared to previous studies, these results imply that long term negative feedback from CO2‐induced increases in vegetation density could reduce temperature following a stabilization of CO2 concentration.
Located in Resources / Climate Science Documents
File PDF document Space observations of inland water bodies show rapid surface warming since 1985
Surface temperatures were extracted from nighttime thermal infrared imagery of 167 large inland water bodies distributed worldwide beginning in 1985 for the months July through September and January through March. Results indicate that the mean nighttime surface water temperature has been rapidly warming for the period 1985–2009 with an average rate of 0.045 ± 0.011°C yr−1 and rates as high as 0.10 ± 0.01°C yr−1. Worldwide the data show far greater warming in the mid‐ and high latitudes of the northern hemisphere than in low latitudes and the southern hemisphere. The analysis provides a new independent data source for assessing the impact of climate change throughout the world and indicates that water bodies in some regions warm faster than regional air temperature. The data have not been homogenized into a single unified inland water surface temperature dataset, instead the data from each satellite instrument have been treated separately and cross compared. Future work will focus on developing a single unified dataset which may improve uncertainties from any inter‐satellite biases.
Located in Resources / Climate Science Documents
File PDF document Interdependence of groundwater dynamics and land-energy feedbacks under climate change
Climate change will have a significant impact on the hydrologic cycle, creating changes in freshwater resources, land cover and land–atmosphere feedbacks. Recent studies have investigated the response of groundwater to climate change but do not account for energy feedbacks across the complete hydrologic cycle1,2. Although land-surface models have begun to include an operational groundwater-type component3–5, they do not include physically based lateral surface and subsurface flow and allow only for vertical transport processes. Here we use a variably saturated groundwater flow model with integrated overland flow and land-surface model processes6–8 to examine the interplay between water and energy flows in a changing climate for the southern Great Plains, USA, an important agricultural region that is susceptible to drought. We compare three scenario simulations with modified atmospheric forcing in terms of temperature and precipitation with a simulation of present-day climate. We find that groundwater depth, which results from lateral water flow at the surface and subsurface, determines the relative susceptibility of regions to changes in temperature and precipitation. This groundwater control is critical to understand processes of recharge and drought in a changing climate.
Located in Resources / Climate Science Documents
File PDF document The Myth of Smart Growth
“Smart growth” is an urban growth management strategy that applies planning and design principles intended to mitigate the impacts of continued growth. If properly applied, these principles represent a positive contribution to new urban development. However, the rhetoric of “smart growth” is that population levels and growth rates are not the problem; it’s merely a matter of how we grow. According to the “smart growth” program, if we are less wasteful and more efficient in our urban growth, we can keep growing and everything will work out fine. The “smart growth” approach is fundamentally pro-growth and does not envision an end to growth or a need to end growth. “Smart growth” is cast as a comprehensive solution, whereas it is merely a potential means of modestly reducing the environmental, social, and economic impacts of continued growth while failing to address its inevitable consequences. The “smart growth” formula has been used to discount and transform legitimate public concerns about the amount and pace of growth into a discussion about how we should best continue growing.
Located in Resources / Climate Science Documents
File PDF document Wildfire, Wildlands, and People: Understanding and Preparing for Wildfire in the Wildland-Urban Interface: Gen. Tech. Rep. RMRS-GTR-299. Fort Collins, CO. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 36 p.
Fire has historically played a fundamental ecological role in many of America’s wildland areas. However, the rising number of homes in the wildland-urban interface (WUI), associated impacts on lives and property from wildfire, and escalating costs of wildfire management have led to an urgent need for communities to become “fire-adapted.” We present maps of the conterminous United States that illustrate historical natural fire regimes, the wildland-urban interface, and the number and location of structures burned since 1999. We outline a sampler of actions, programs, and community planning and development options to help decrease the risks of and damages from wildfire. Key Words: wildfire, community planning, fire-adapted, wildland-urban interface, defensible space
Located in Resources / Climate Science Documents
File PDF document WATER, CLIMATE CHANGE, AND FORESTS Watershed Stewardship for a Changing Climate
Water from forested watersheds provides irreplaceable habitat for aquatic and riparian species and supports our homes, farms, industries, and energy production. Secure, high-quality water from forests is fundamental to our prosperity and our stewardship responsibility. Yet population pressures, land uses, and rapid climate change combine to seriously threaten these waters and the resilience of watersheds in most places. Forest land managers are expected to anticipate and respond to these threats and steward forested watersheds to ensure the sustained protection and provision of water and the services it provides. Effective, constructive watershed stewardship requires that we think, collaborate, and act. We think to understand the values at risk and how watersheds can remain resilient, and we support our thinking with knowledge sharing and planning. We collaborate to develop common understandings and goals for watersheds and a robust, durable capacity for response that includes all stakeholders and is guided by science. We act to secure and steward resilient watersheds that will continue to provide crucial habitats and water supplies in the coming century by implementing practices that protect, maintain, and restore watershed processes and services.
Located in Resources / Climate Science Documents
File PDF document Assessing potential climate change effects on vegetation using a linked model approach
We developed a process that links the mechanistic power of dynamic global vegetation models with the detailed vegetation dynamics of state-and-transition models to project local vegetation shifts driven by projected climate change. We applied our approach to central Oregon (USA) ecosystems using three climate change scenarios to assess potential future changes in species composition and community structure. Our results suggest that: (1) legacy effects incorporated in state-and-transition models realistically dampen climate change effects on vegetation; (2) species-specific response to fire built into state-and- transition models can result in increased resistance to climate change, as was the case for ponderosa pine (Pinus ponderosa) forests, or increased sensitivity to climate change, as was the case for some shrublands and grasslands in the study area; and (3) vegetation could remain relatively stable in the short term, then shift rapidly as a consequence of increased disturbance such as wildfire and altered environmental conditions. Managers and other land stewards can use results from our linked models to better anticipate potential climate-induced shifts in local vegetation and resulting effects on wildlife habitat.
Located in Resources / Climate Science Documents
File Global temperature change
We conclude that global warming of more than 􏱒1°C, relative to 2000, will constitute ‘‘dangerous’’ climate change as judged from likely effects on sea level and extermination of species. climate change 􏱙 El Niños 􏱙 global warming 􏱙 sea level 􏱙 species extinctions
Located in Resources / Climate Science Documents
File PDF document State of the Wild: PERSPECTIVE OF A CLIMATOLOGIST
“Animals are on the run. Plants are migrating too.”1 I wrote those words in 2006 to draw attention to the fact that climate change was already under way. People do not notice climate change because it is masked by day-to-day weather fluctuations, and we reside in comfortable homes. Animals and plants, on the other hand, can survive only within certain climatic conditions, which are now changing. The National Arbor Day Foundation had to redraw its maps for the zones in which tree species can survive, and animals are shifting to new habitats as well. Are these gradual changes in the wild consistent with dramatic scientific assessments of a crystallizing planetary emergency? Unfortunately, yes. Present examples only hint at the scale of the planetary emergency that climate studies reveal with increasing clarity.
Located in Resources / Climate Science Documents
File PDF document Sea-level and salinity fluctuations during the Paleocene–Eocene thermal maximum in Arctic Spitsbergen
Palaeoenvironmental manifestations of the Paleocene–Eocene thermal maximum (PETM; ~ 56 Ma) are relatively well documented in low- to mid-latitude settings and at high southern latitudes, but no documented high northern latitude sites record the entire hyperthermal event. We present high-resolution multi-proxy records from a PETM succession on Spitsbergen in the high Arctic (palaeolatitude ~75 °N). By comparing our results with those from Integrated Ocean Drilling Program Site 302-4A, we document regional palaeoenvironmental variations in the expression of the PETM, with evidence for major differences in basin- margin vegetation and water column oxygen depletion. Sedimentological, palynological and geochemical data demonstrate a pre-PETM sea level rise in Spitsbergen before the −4‰ δ13CTOC excursion, which culminated in maximum flooding during the peak of the event. The appearance of the dinoflagellate cyst Apectodinium before the onset of the carbon isotope excursion (CIE) corroborates that environmental change in the Arctic had begun prior to the CIE. Sedimentological and palynological evidence indicate that elevated terrestrial runoff resulted in water column stratification, providing further evidence for an intensification of the hydrological cycle during the PETM. Keywords: abrupt/rapid climate change, PETM, paleoecology, sedimentology, Spitsbergen, Arctic
Located in Resources / Climate Science Documents