Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Effects of Management on Carbon Sequestration in Forest Biomass in Southeast Alaska
The Tongass National Forest (Tongass) is the largest national forest and largest area of old-growth forest in the United States. Spatial geographic informa- tion system data for the Tongass were combined with forest inventory data to estimate and map total carbon stock in the Tongass; the result was 2.8±0.5PgC,or8%of the total carbon in the forests of the conterminous USA and 0.25% of the carbon in global forest vegetation and soils. Cumulative net carbon loss from the Tongass due to management of the forest for the period 1900–95 was estimated at 6.4–17.2 Tg C. Using our spatially explicit data for carbon stock and net flux, we modeled the potential effect of five management regimes on future net carbon flux. Estimates of net carbon flux were sensitive to projections of the rate of carbon accumulation in second-growth forests and to the amount of carbon left in standing biomass after harvest. Projections of net carbon flux in the Tongass range from 0.33 Tg C annual sequestration to 2.3 Tg C annual emission for the period 1995–2095. For the period 1995–2195, net flux estimates range from 0.19 Tg C annual sequestra- tion to 1.6 Tg C annual emission. If all timber harvesting in the Tongass were halted from 1995 to 2095, the economic value of the net carbon sequestered during the 100-year hiatus, assuming $20/Mg C, would be $4 to $7 million/y (1995 US dollars). If a prohibition on logging were extended to 2195, the annual economic value of the carbon sequestered would be largely unaffected ($3 to $6 million/y). The potential annual economic value of carbon sequestration with management maxi- mizing carbon storage in the Tongass is comparable to revenue from annual timber sales historically authorized for the forest. Key words: carbon sequestration; geographic information system; climate change; forest management; Alaska.
Located in Resources / Climate Science Documents
File PDF document Effects of tree mortality caused by a bark beetle outbreak on the ant community in the San Bernardino National Forest
Ants are used as bioindicators of the effects of disturbance on ecosystems for several reasons. First, ants are generally responsive to alteration of the biomass and diversity of the local plant community (Kalif et al., 2001) and other environmental variables (Underwood & Fisher, 2006). Second, because they occupy fixed nest locations, ants are affected by conditions on a very small scale, so that their presence and abundance are a better indicator of local conditions than are the presence or abundance of more mobile animals (Stephens & Wagner, 2006; Underwood & Fisher, 2006). Ants play important ecosystem roles and are therefore often a relevant choice for monitoring (Ho ̈lldobler & Wilson, 1990). They make up a significant percentage of the animal biomass in many ecosystems, they can be crucial to processes such as soil mixing and nutrient transport (Gentry & Stiritz, 1972), and they are important players in nutrient cycling and energy flow. Ants can also strongly influence the plant community via seed dispersal and granivory (Christian, 2001; Barrow et al., 2007). While the diversity of a given taxon is often not a reliable indicator of the diversity of other groups (Lawton et al., 1998; Bennett et al., 2009; Maleque et al., 2009; Wike et al., 2010), ant diversity is known to reflect the diversity of other invertebrates in ecosystems recovering from a disturbance in some cases (Andersen & Majer, 2004).The use of ants as bioindicators must be undertaken with caution (Underwood & Fisher, 2006). Different ant communities do not always respond to a disturbance in the same way (Arnan et al., 2009). In addition, broad measures of a bioindicator taxon, such as species richness or abundance, are potentially misleading. For instance, while it is popular to measure the species richness of bioindicator groups, the ant species richness of different habitats has been observed to respond differently to similar disturbances (Farji-Brener et al., 2002; Ratchford et al., 2005; Barrow et al., 2007), and ant species richness often does not respond at all unless disturbances are extreme (Andersen & Majer, 2004).Nonetheless, changes in the ant community can provide useful information about the responses of the ecosystem as a whole.
Located in Resources / Climate Science Documents
File PDF document Effects of Urbanization and Climate Change on Stream Health
Estimation of stream health involves the analysis of changes in aquatic species, riparian vegetation, microinvertebrates, and channel degradation due to hydrologic changes occurring from anthropogenic activities. In this study, we quantified stream health changes arising from urbanization and climate change using a combination of the widely accepted Indicators of Hydrologic Alteration (IHA) and Dundee Hydrologic Regime Assessment Method (DHRAM) on a rapidly urbanized watershed in the Dallas-Fort Worth metropolitan area in Texas. Historical flow data were split into pre-alteration and post-alteration periods. The influence of climate change on stream health was analyzed by dividing the precipitation data into three groups of dry, average, and wet conditions based on recorded annual precipitation. Hydrologic indicators were evaluated for all three of the climate scenarios to estimate the stream health changes brought about by climate change. The effect of urbanization on stream health was analyzed for a specific subwatershed where urbanization occurred dramatically but no stream flow data were available using the widely used watershed-scale Soil and Water Assessment Tool (SWAT) model. The results of this study identify negative impacts to stream health with increasing urbanization and indicate that dry weather has more impact on stream health than wet weather. The IHA-DHRAM approach and SWAT model prove to be useful tools to estimate stream health at the watershed scale.
Located in Resources / Climate Science Documents
File PDF document El Nino in a changing climate
El Nino events, characterized by anomalous warming in the eastern equatorial Pacific Ocean, have global climatic teleconnections and are the most dominant feature of cyclic climate variability on subdecadal timescales. Understanding changes in the frequency or characteristics of El Nino events in a changing climate is therefore of broad scientific and socioeconomic interest. Recent studies (1–5) show that the canonical El Nino has become less frequent and that a different kind of El Nino has become more common during the late twentieth century, in which warm sea surface temperatures (SSTs) in the central Pacific are flanked on the east and west by cooler SSTs. This type of El Nino, termed the central Pacific El Nino (CP-El Nino; also termed the dateline El Nino (2), El Nino Modoki (3) or a warm pool El Nino (5), differs from the canonical eastern Pacific El Nino (EP-El Nino) in both the location of maximum SST anomalies and tropical–midlatitude teleconnections. Here we show changes in the ratio of CP-El Nino to EP-El Nino under projected global EQ warming scenarios from the Coupled Model Intercomparison Project phase 3 multi-model data set (6). Using calculations based 10o S on historical El Nino indices, we find that projections of anthropogenic climate change are associated with an increased frequency of the CP-El Nino compared to the EP-El Nino. When restricted to the six climate models with the best representation of the twentieth-century ratio of CP-El Nino to EP-El Nino, the occurrence ratio of CP-El Nino/EP-El Nino is projected to increase as 10o N much as five times under global warming. The change is related to a flattening of the thermocline in the equatorial Pacific.
Located in Resources / Climate Science Documents
File PDF document Elderkin et al 2007.pdf
Located in Resources / TRB Library / EDD-FIK
File Elevated Eocene Atmospheric CO2 and Its Subsequent Decline
Closing paragraph: Estimates of early Eocene atmospheric CO2 from Green River sodium carbonates are in the same range as those predicted by geochemical models (7). By È20 Ma, all available data (8) suggest ECO2^atm was at or near modern concentrations.
Located in Resources / Climate Science Documents
File PDF document Elevation-dependent influence of snow accumulation on forest greening
Rising temperatures and declining water availability have influenced the ecological function of mountain forests over the past half-century. For instance, warming in spring and summer and shifts towards earlier snowmelt are associated with an increase in wildfire activity and tree mortality in mountain forests in the western United States (1,2). Temperature increases are expected to continue during the twenty-first century in mountain ecosystems across the globe (3,4), with uncertain consequences. Here, we examine the influence of interannual variations in snowpack accumulation on forest greenness in the Sierra Nevada Mountains, California, between 1982 and 2006. Using observational records of snow accumulation and satellite data on vegetation greenness we show that vegetation greenness increases with snow accumulation. Indeed, we show that variations in maximum snow accumulation explain over 50% of the interannual variability in peak forest greenness across the Sierra Nevada region. The extent to which snow accumulation can explain variations in greenness varies with elevation, reaching a maximum in the water-limited mid- elevations, between 2,000 and 2,600 m. In situ measurements of carbon uptake and snow accumulation along an elevational transect in the region confirm the elevation dependence of this relationship. We suggest that mid-elevation mountain forest ecosystems could prove particularly sensitive to future increases in temperature and concurrent changes in snow accumulation and melt.
Located in Resources / Climate Science Documents
Person Elliott, Gregg
Located in Expertise Search
File PDF document Ellis 1936.pdf
Located in Resources / TRB Library / EDD-FIK
File PDF document Ellis Ellis 1926.pdf
Located in Resources / TRB Library / EDD-FIK