Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Distler Bleam 1995.pdf
Located in Resources / TRB Library / DIN-ECO
File PDF document Distribution and characterization of in‐channel large wood in relation to geomorphic patterns on a low‐gradient river
A 177 river km georeferenced aerial survey of in‐channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low‐gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine‐grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LW frequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low‐gradient, dam‐regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests
Located in Resources / Climate Science Documents
Image Distribution of the American Black Duck
Distribution of the American Black Duck. This species breeds locally South to the dashed line.
Located in Black-Duck-site-images
Image Distribution of the American Black Duck
Distribution of the American Black Duck. This species breeds locally South to the dashed line.
Located in Resources / Images
File PDF document Disturbance−diversity models: what do they really predict and how are they tested?
The intermediate disturbance hypothesis (IDH) and the dynamic equilibrium model (DEM) are influential theories in ecology. The IDH predicts large species numbers at intermediate levels of disturbance and the DEM predicts that the effect of disturbance depends on the level of productivity. However, various indices of diversity are considered more commonly than the predicted number of species in tests of the hypotheses. This issue reaches beyond the scientific community as the predictions of the IDH and the DEM are used in the management of national parks and reserves. In order to compare responses with disturbance among measures of biodiversity, we used two different approaches of mathematical modelling and conducted an extensive meta-analysis. Two-thirds of the surveyed studies present different results for different diversity measures. Accordingly, the meta-analysis showed a narrow range of negative quadratic regression components for richness, but not evenness. Also, the two models support the IDH and the DEM, respectively, when biodiversity is measured as species richness, but predict evenness to increase with increasing disturbance, for all levels of productivity. Consequently, studies that use compound indices of diversity should present logical arguments, a priori, to why a specific index of diversity should peak in response to disturbance.
Located in Resources / Climate Science Documents
File PDF document Divergent global precipitation changes induced by natural versus anthropogenic forcing
As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry sub-tropical regions (1). The absolute magnitude and regional details of such changes, however, remain intensely debated (2,3). As is well known from El Nino studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall (4,5). Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation (6–9). In contrast, in most model projections of future greenhouse warming this gradient weakens (2,10,11). It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000–1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget (12), which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth’s surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.
Located in Resources / Climate Science Documents
File PDF document Divergent phenological response to hydroclimate variability in forested mountain watersheds
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins’ Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnos- tic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. Keywords: drought deciduousness, hydroclimate variability, landscape phenology, MODIS NDVI, topoclimate gradient
Located in Resources / Climate Science Documents
Diverse Connections for Diverse Watersheds
Save the Date: 8th Annual Tennessee River Basin Network Conference.
Located in News & Events / Events / Upload New Events
File PDF document Diverse pollinator communities enhance plant reproductive success
Understanding the functional consequences of biodiversity loss is a major goal of ecology. Animal-mediated pollination is an essential ecosystem function and service provided to mankind. However, little is known how pollinator diversity could affect pollination services. Using a substitutive design, we experimentally manipu- lated functional group (FG) and species richness of pollinator communities to investigate their consequences on the reproductive success of an obligate out-crossing model plant species, Raphanus sativus. Both fruit and seed set increased with pollinator FG richness. Furthermore, seed set increased with species richness in pol- linator communities composed of a single FG. However, in multiple-FG communities, highest species richness resulted in slightly reduced pollination services compared with intermediate species richness. Our analysis indicates that the presence of social bees, which showed roughly four times higher visitation rates than solitary bees or hoverflies, was an important factor contributing to the positive pollinator diversity–pollination service relationship, in particular, for fruit set. Visitation rate at different daytimes, and less so among flower heights, varied among social bees, solitary bees and hoverflies, indicating a niche complementarity among these pollinator groups. Our study demonstrates enhanced pollination services of diverse pollinator communities at the plant population level and suggests that both the niche complementarity and the presence of specific taxa in a pollinator community drive this positive relationship.
Located in Resources / Climate Science Documents
File PDF document Djajasasmita 1982.pdf
Located in Resources / TRB Library / DIN-ECO