Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Dimock Unionicola formosa.pdf
Located in Resources / TRB Library / CVA-DIM
File PDF document Dimock Wright 1993.pdf
Located in Resources / TRB Library / CVA-DIM
File PDF document Dingess Joy 1976.pdf
Located in Resources / TRB Library / DIN-ECO
File PDF document Dinkins 1997.pdf
Located in Resources / TRB Library / DIN-ECO
File PDF document Disappearing Arctic sea ice reduces available water in the American west
Recent decreases in Arctic sea ice cover and the probability of continued decreases have raised the question of how reduced Arctic sea ice cover will influence extrapolar climate. Using a fully coupled earth system model, we generate one possible future Arctic sea ice distribution. We use this ‘‘future’’ sea ice distribution and the corresponding sea surface temperatures (SSTs) to run a fixed SST and ice concentration experiment with the goal of determining direct climate responses to the reduction in Arctic sea ice that is projected to occur in the next 50 years. Our results indicate that future reductions in Arctic sea ice cover could significantly reduce available water in the American west and highlight the fact that the most severe impacts of future climate change will likely be at a regional scale.
Located in Resources / Climate Science Documents
Image JPEG image Discussion Reply
Located in Help / Help Images
File PDF document Dispersal will limit ability of mammals to track climate change in the Western Hemisphere
As they have in response to past climatic changes, many species will shift their distributions in response to modern climate change. However, due to the unprecedented rapidity of projected climatic changes, some species may not be able to move their ranges fast enough to track shifts in suitable climates and associated habitats. Here, we investigate the ability of 493 mammals to keep pace with projected climatic changes in the Western Hemisphere. We modeled the velocities at which species will likely need to move to keep pace with projected changes in suitable climates. We compared these velocities with the velocities at which species are able to move as a function of dispersal distances and dispersal frequencies. Across the Western Hemisphere, on average, 9.2% of mammals at a given location will likely be unable to keep pace with climate change. In some places, up to 39% of mammals may be unable to track shifts in suitable climates. Eighty-seven percent of mammalian species are expected to experience reductions in range size and 20% of these range reductions will likely be due to limited dispersal abilities as opposed to reductions in the area of suitable climate. Because climate change will likely outpace the response capacity of many mammals, mammalian vulnerability to climate change may be more extensive than previously anticipated.
Located in Resources / Climate Science Documents
Image PNG image Display_Default_Page
Located in Help / Help Images
Image PNG image Display_Drop_Down
Located in Help / Help Images
File PDF document Dissecting insect responses to climate warming: overwintering and post-diapause performance in the southern green stink bug, Nezara viridula, under simulated climate-change conditions
The effect of simulated climate change on overwintering and postdiapause reproductive performance is studied in Nezara viridula (L.) (Heteroptera: Pentatomidae) close to the species’ northern range limit in Japan. Insects are reared from October to June under quasi-natural (i.e. ambient outdoor) conditions and in a transparent incubator, in which climate warming is simulated by adding 2.5 ◦ C to the ambient temperatures. Despite the earlier assumption that females of N. viridula overwinter in diapause, whereas males do so in quiescence, regular dissections show that the two sexes overwinter in a state of true diapause. During winter, both sexes are dark-coloured and have undeveloped reproductive organs. Resumption of development does not start until late March. During winter, the effect of simulated warming on the dynamics and timing of physiological processes appears to be limited. However, the warming significantly enhances winter survival (from 27–31% to 47–70%), which is a key factor in range expansion of N. viridula. In spring, the effect of simulated warming is complex. It advances the post-diapause colour change and transition from dormancy to reproduction. The earlier resumption of development is more pronounced in females: in April, significantly more females are already in a reproductive state under the simulated warming than under quasi-natural conditions. In males, the tendency is similar, although the difference is not significant. Warming significantly enhances spring survival and percentage of copulating adults, although not the percentage of ovipositing females and fecundity. The results suggest that, under the expected climate-warming conditions, N. viridula will likely benefit mostly as a result of increased winter and spring survival and advanced post-diapause reproduction. Further warming is likely to allow more adults to survive the critical cold season and contribute (both numerically and by increasing heterogeneity) to the post-overwintering population growth, thus promoting the establishment of this species in newly-colonized area
Located in Resources / Climate Science Documents