Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
24 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Conservation Biology: Predicting Birds’ Responses to Forest Fragmentation
Understanding species’ ecological responses to habitat fragmentation is critical for biodiversity conservation, especially in tropical forests. A detailed recent study has shown that changes in the abundances of bird species following fragmentation may be dramatic and unpredictable.
Located in Resources / Climate Science Documents
File PDF document Conservation threats: biofuel
Biofuels: Europe’s largest conservation charity has launched a campaign to heighten the threat to wildlife habitats and biodiversity from plantations of fuel crops. Nigel Williams reports. 1st paragraph: Europe embraced the theoretical potential that biofuels might offer both in terms of climate change and renewable sources of energy, as enthusiastically as anywhere else, but the dawning reality has hit harder here than in many other areas with the realisation that it is a crowded continent with limited scope for home-grown material.
Located in Resources / Climate Science Documents
Eastern Deciduous Forests
In the northeastern U.S., partners are helping reinvigorate private forestry as a viable—and sustainable—industry. After decades of harvesting valuable trees from forests and leaving the rest, eastern deciduous forests are a monoculture of same-age or same-species trees, lacking both market value and healthy wildlife populations. WLFW “hit the reset button” by working with forest owners to establish young forest stands and restore economic value and abundant wildlife such as white tailed deer, turkey, ruffed grouse, and rarer species like the golden-winged warbler.
File PDF document Ecosystem services: From theory to implementation
Around the world, leaders are increasingly recognizing ecosystems as natural capital assets that supply life-support services of tremendous value. The challenge is to turn this recognition into incentives and institutions that will guide wise investments in natural capital, on a large scale. Advances are required on three key fronts, each featured here: the science of ecosystem production functions and service mapping; the design of appropriate finance, policy, and governance systems; and the art of implementing these in diverse biophysical and social contexts. Scientific understanding of ecosystem production functions is improving rapidly but remains a limiting factor in incorporating natural capital into decisions, via systems of national accounting and other mechanisms. Novel institutional structures are being established for a broad array of services and places, creating a need and opportunity for systematic assessment of their scope and limitations. Finally, it is clear that formal sharing of experience, and defining of priorities for future work, could greatly accelerate the rate of innova- tion and uptake of new approaches.
Located in Resources / Climate Science Documents
File PDF document Elevation-dependent influence of snow accumulation on forest greening
Rising temperatures and declining water availability have influenced the ecological function of mountain forests over the past half-century. For instance, warming in spring and summer and shifts towards earlier snowmelt are associated with an increase in wildfire activity and tree mortality in mountain forests in the western United States (1,2). Temperature increases are expected to continue during the twenty-first century in mountain ecosystems across the globe (3,4), with uncertain consequences. Here, we examine the influence of interannual variations in snowpack accumulation on forest greenness in the Sierra Nevada Mountains, California, between 1982 and 2006. Using observational records of snow accumulation and satellite data on vegetation greenness we show that vegetation greenness increases with snow accumulation. Indeed, we show that variations in maximum snow accumulation explain over 50% of the interannual variability in peak forest greenness across the Sierra Nevada region. The extent to which snow accumulation can explain variations in greenness varies with elevation, reaching a maximum in the water-limited mid- elevations, between 2,000 and 2,600 m. In situ measurements of carbon uptake and snow accumulation along an elevational transect in the region confirm the elevation dependence of this relationship. We suggest that mid-elevation mountain forest ecosystems could prove particularly sensitive to future increases in temperature and concurrent changes in snow accumulation and melt.
Located in Resources / Climate Science Documents
File PDF document Feedbacks of Terrestrial Ecosystems to Climate Change
Most modeling studies on terrestrial feedbacks to warming over the twenty-first century imply that the net feedbacks are negative—that changes in ecosystems, on the whole, resist warming, largely through ecosystem carbon storage. Although it is clear that potentially important mechanisms can lead to carbon storage, a number of less well- understood mechanisms, several of which are rarely or incompletely modeled, tend to diminish the negative feedbacks or lead to positive feedbacks. At high latitudes, negative feedbacks from forest expansion are likely to be largely or completely compensated by positive feedbacks from decreased albedo, increased carbon emissions from thawed permafrost, and increased wildfire. At low latitudes, negative feedbacks to warming will be decreased or eliminated, largely through direct human impacts. With modest warming, net feedbacks of terrestrial ecosystems to warming are likely to be negative in the tropics and positive at high latitudes. Larger amounts of warming will generally push the feedbacks toward the positive.
Located in Resources / Climate Science Documents
File PDF document Forecasting the response of Earth’s surface to future climatic and land use changes: A review of methods and research needs
In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth’s surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.
Located in Resources / Climate Science Documents
Grasslands and Savannas
The central and eastern grassland and savanna regions of the U.S. include the number one crop production states for corn, wheat, sorghum, soybeans, peanuts and cotton. Six of the top ten forest production states are in the East, and the Fescue Belt has the highest concentration of livestock producers and livestock in the country. Southeastern grasslands are the most diverse biologically in the U.S. but also the most imperiled with up to 90% in degraded condition or lost. Major threats include: habitat loss and fragmentation; climate change; alterations to natural land disturbance regimes; and invasive species.
File PDF document Impacts of mountaintop mining on terrestrial ecosystem integrity: identifying landscape thresholds for avian species in the central Appalachians, United States
Reclaimed mine-dominated landscapes (less forest and more grassland/shrubland cover) elicited more negative (57 %) than positive (39 %) species responses. Negative thresholds for each landscape metric generally occurred at lower values than positive thresholds, thus negatively responding species were detrimentally affected before positively responding species benefitted. Forest interior birds generally responded negatively to landscape metric thresholds, interior edge species responses were mixed, and early successional birds responded positively. The forest interior guild declined most at 4 % forest loss, while the shrubland guild increased greatest after 52 % loss
Located in Resources / Climate Science Documents
File PDF document Reconciling nature conservation and traditional farming practices: a spatially explicit framework to assess the extent of High Nature Value farmlands in the European countryside
Over past centuries, European landscapes have been shaped by human management. Traditional, low intensity agricultural practices, adapted to local climatic, geographic, and environmental conditions, led to a rich, diverse cultural and natural heritage, reflected in a wide range of rural landscapes, most of which were preserved until the advent of industrialized agriculture (Bignal & McCracken 2000; Paracchini et al. 2010; Oppermann et al. 2012). Agricultural landscapes currently account for half of Europe’s territory (Overmars et al. 2013), with ca. 50% of all species relying on agricultural habitats at least to some extent (Kristensen 2003; Moreira et al. 2005; Halada et al. 2011). Due to their acknowledged role in the maintenance of high levels of biodiversity, low-intensity farming systems have been highlighted as critical to nature conservation and protection of the rural environment (Beaufoy et al. 1994; Paracchini et al. 2010; Halada et al.2011; Egan & Mortensen 2012).
Located in Resources / Climate Science Documents