Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
76 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Attributing physical and biological impacts to anthropogenic climate change
Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.
Located in Resources / Climate Science Documents
File PDF document Barking up the Wrong Tree? Forest Sustainability in the wake of Emerging Bioenergy Policies
The spotted owl controversy revealed that federal forest management policies alone could not guarantee functioning forest ecosystems. At the same time as the owl’s listing, agreements made at the 1992 Rio Earth Summit highlighted the mounting pressures on natural systems, thus unofficially marking the advent of sustainable forestry management (SFM).2 While threats to forest ecosystems from traditional logging practices certainly remain,3 developed and developing countries have shifted generally toward more sustainable forest management, at least on paper, including codifying various sustainability indicators in public laws.4 Nevertheless, dark policy clouds are gathering on the forest management horizon. Scientific consensus has grown in recent years around a new and arguably more onerous threat to all of the world’s ecosystems—climate change. Governments’ responses have focused on bioenergy policies aimed at curtailing anthropogenic greenhouse gas (GHG) emissions, and mandatesfor renewables in energy supplies now abound worldwide. [Vol. 37:000
Located in Resources / Climate Science Documents
File PDF document Beaver (Castor canadensis) mitigate the effects of climate on the area of open water in boreal wetlands in western Canada
Shallow open water wetlands provide critical habitat for numerous species, yet they have become increasingly vulnerable to drought and warming temperatures and are often reduced in size and depth or disappear during drought. We examined how temperature, precipitation and beaver (Castor canadensis) activity influenced the area of open water in wetlands over a 54- year period in the mixed-wood boreal region of east-central Alberta, Canada. This entire glacial landscape with intermittently connected drainage patterns and shallow wetland lakes with few streams lost all beaver in the 19th century, with beaver returning to the study area in 1954. We assessed the area of open water in wetlands using 12 aerial photo mosaics from 1948 to 2002, which covered wet and dry periods, when beaver were absent on the landscape to a time when they had become well established. The number of active beaver lodges explained over 80% of the variability in the area of open water during that period. Temperature, precipitation and climatic variables were much less important than beaver in maintaining open water areas. In addition, during wet and dry years, the presence of beaver was associated with a 9-fold increase in open water area when compared to a period when beaver were absent from those same sites. Thus, beaver have a dramatic influence on the creation and maintenance of wetlands even during extreme drought. Given the important role of bea- ver in wetland preservation and in light of a drying climate in this region, their removal should be considered a wetland disturbance that should be avoided. Beaver Castor canadensis Drought East-central Alberta Elk Island National Park Mixed-wood boreal Wetland conservation
Located in Resources / Climate Science Documents
File PDF document Biodiversity management in the face of climate change: A review of 22 years of recommendations
Climate change creates new challenges for biodiversity conservation. Species ranges and ecological dynamics are already responding to recent climate shifts, and current reserves will not continue to support all species they were designed to protect. These problems are exacerbated by other global changes. Scholarly articles recommending measures to adapt conservation to climate change have proliferated over the last 22 years. We systematically reviewed this literature to explore what potential solutions it has identified and what consensus and direction it provides to cope with climate change. Several consistent recommendations emerge for action at diverse spatial scales, requiring leadership by diverse actors. Broadly, adaptation requires improved regional institutional coordination, expanded spatial and temporal perspective, incorporation of climate change scenarios into all planning and action, and greater effort to address multiple threats and global change drivers simultaneously in ways that are responsive to and inclusive of human communities. However, in the case of many recommendations the how, by whom, and under what conditions they can be implemented is not specified. We synthesize recommendations with respect to three likely conservation pathways: regional planning; site-scale management; and modification of existing conservation plans. We identify major gaps, including the need for (1) more specific, operational examples of adaptation principles that are consistent with unavoidable uncertainty about the future; (2) a practical adaptation planning process to guide selection and integration of recommendations into existing policies and programs; and (3) greater integration of social science into an endeavor that, although dominated by ecology, increasingly recommends extension beyond reserves and into human-occupied landscapes.
Located in Resources / Climate Science Documents
File PDF document Biotic Multipliers of Climate Change
A focus on species interactions may improve predictions of the effects of climate change on ecosystems.
Located in Resources / Climate Science Documents
File PDF document Bird population trends are linearly affected by climate change along species thermal ranges
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.
Located in Resources / Climate Science Documents
File PDF document BOTANY AND A CHANGING WORLD: INTRODUCTION TO THE SPECIAL ISSUE ON GLOBAL BIOLOGICAL CHANGE
The impacts of global change have heightened the need to understand how organisms respond to and influence these changes. Can we forecast how change at the global scale may lead to biological change? Can we identify systems, processes, and organisms that are most vulnerable to global changes? Can we use this understanding to enhance resilience to global changes? This special issue on global biological change emphasizes the integration of botanical information at different biological levels to gain perspective on the direct and indirect effects of global change. Contributions span a range of spatial scales and include both ecological and evolutionary timescales and highlight work across levels of organization, including cellular and physiological processes, individuals, populations, and ecosystems. Integrative botanical approaches to global change are critical for the eco- logical and evolutionary insights they provide and for the implications these studies have for species conservation and ecosys- tem management. Key words: community dynamics; flowering phenology; functional traits; global biological change; invasive species; land-use patterns; plant–microbial interactions; species interactions.
Located in Resources / Climate Science Documents
File Can Plants Adapt? New Questions in Climate Change Research
As it becomes increasingly apparent that human activities are partly responsible for global warming, the focus of climate change research is shifting from the churning out of assessments to the pursuit of science that can test the robustness of existing models. The questions now being addressed are becoming more challenging:The questions now being addressed are becoming more challenging: Can water-use efficiency of plants keep up with rising temperatures? Will we see a greening period for some decades, even a century, before facing a rapid browndown as threshold temperatures are reached? Or could the thresholds be reached much sooner because of interactions of biophysical processes? Is the carbon storage issue missing the point?
Located in Resources / Climate Science Documents
File PDF document Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production
Over 13 million ha of former cropland are enrolled in the US Conservation Reserve Program (CRP), providing well-recognized biodiversity, water quality, and carbon (C) sequestration benefits that could be lost on conversion back to agricultural production. Here we provide measurements of the greenhouse gas consequences of converting CRP land to continuous corn, corn–soybean, or perennial grass for biofuel production. No-till soybeans preceded the annual crops and created an initial carbon debt of 10.6 Mg CO2 equivalents (CO2e)·ha−1 that included agronomic inputs, changes in C stocks, altered N2O and CH4 fluxes, and foregone C sequestration less a fossil fuel offset credit. Total debt, which includes future debt created by additional changes in soil C stocks and the loss of substantial future soil C sequestration, can be constrained to 68 Mg CO2e·ha−1 if subsequent crops are under permanent no-till management. If tilled, however, total debt triples to 222 Mg CO2e·ha−1 on account of further soil C loss. Projected C debt repayment periods under no-till management range from 29 to 40 y for corn– soybean and continuous corn, respectively. Under conventional tillage repayment periods are three times longer, from 89 to 123 y, respectively. Alternatively, the direct use of existing CRP grasslands for cellulosic feedstock production would avoid C debt entirely and provide modest climate change mitigation immediately. Incentives for permanent no till and especially permission to harvest CRP biomass for cellulosic biofuel would help to blunt the climate impact of future CRP conversion. land-use change | renewable energy | carbon balance | agriculture | nitrous oxide
Located in Resources / Climate Science Documents
File PDF document Carbon Dynamics of the Forest Sector
Main points: The basic ecosystem science behind carbon dynamics in forests is relatively straightforward (really!).This science doesn’t seem to be applied very routinely in the policy arena. This mismatch is undermining the potential of the forest sector in helping to mitigate greenhouse gases in the atmosphere
Located in Resources / Climate Science Documents