Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Approaching the Limits: A book review in Science
Excerpts: "In Harvesting the Biosphere, Vaclav Smil traces the historical development of human consumption of biological resources and evaluates whether we could be approaching important global limits. Smil (an economist at the University of Manitoba) has written several books on global energy and other resource issues; here, he focuses on human consumption of the plant and animal life and whether current trends are sustainable." And "Full of recent references and statistics, Harvesting the Biosphere adds to the growing chorus of warnings about the current trajectory of human activity on a finite planet, of which climate change is only one dimension. One can quibble with some assumptions or tweak Smil’s calculations, but the bottom line will not change, only the time it may take humanity to reach a crisis point. Systems ecology teaches that the human population and consumption trajectories need a stronger feedback control than currently exists. Either we are smart enough to craft that feedback mechanism ourselves, or the Earth system will ultimately provide it."
Located in Resources / Climate Science Documents
File PDF document Are conservation organizations configured for effective adaptation to global change?
Conservation organizations must adapt to respond to the ecological impacts of global change. Numerous changes to conservation actions (eg facilitated ecological transitions, managed relocations, or increased corridordevelopment) have been recommended, but some institutional restructuring within organizations may also be needed. Here we discuss the capacity of conservation organizations to adapt to changing environmental conditions, focusing primarily on public agencies and nonprofits active in land protection and management in the US. After first reviewing how these organizations anticipate and detect impacts affecting target species and ecosystems, we then discuss whether they are sufficiently flexible to prepare and respond by reallocating funding, staff, or other resources. We raise new hypotheses about how the configuration of different organizations enables them to protect particular conservation targets and manage for particular biophysical changes that require coordinated management actions over different spatial and temporal scales. Finally, we provide a discussion resource to help conservation organizations assess their capacity to adapt.
Located in Resources / Climate Science Documents
File PDF document Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?
Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production—or p × g—through a time-independent factor of 9.7 ± 0.3 mW per inflation-adjusted 1990 US dollar. This important constraint, and the fact that f and c have historically varied rather slowly, points towards substantially narrowed visions of future emissions scenarios for implementation in GCMs.
Located in Resources / Climate Science Documents
File PDF document Are There Rebound Effects from Energy Efficiency? – An Analysis of Empirical Data, Internal Consistency, and Solutions
Of the rigorously-framed hypotheses claiming that large negative rebounds exist, we measure them against the data, which refute the hypotheses. Rebounds at the end-use level are small and decrease over time. Rebounds at the economy-wide level are trivially small, and might well be a net positive. Jevons himself indicated that the ultimate solution requires a lower standard of living
Located in Resources / Climate Science Documents
File PDF document Are we in the midst of the sixth mass extinction? A view from the world of amphibians
Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environ- ments. The amphibians—frogs, salamanders, and caecilians—may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one- third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infec- tious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction. chytridiomycosis 􏰎 climate change 􏰎 population declines 􏰎 Batrachochytrium dendrobatidis 􏰎 emerging disease
Located in Resources / Climate Science Documents
File PDF document Area–heterogeneity tradeoff and the diversity of ecological communities
For more than 50 y ecologists have believed that spatial heterogeneity in habitat conditions promotes species richness by increasing opportunities for niche partitioning. However, a recent stochastic model combining the main elements of niche theory and island biogeography theory suggests that environmental heterogeneity has a general unimodal rather than a positive effect on species richness. This result was explained by an inherent tradeoff between environmental heterogeneity and the amount of suitable area available for individual species: for a given area, as heterogeneity increases, the amount of effective area available for individual species decreases, thereby reducing population sizes and increasing the likelihood of stochastic extinctions. Here we provide a comprehensive evaluation of this hypothesis. First we analyze an extensive database of breeding bird distribution in Catalonia and show that patterns of species richness, species abundance, and extinction rates are consistent with the predictions of the area–heterogeneity tradeoff and its proposed mechanisms. We then perform a metaanalysis of heterogeneity–diversity relationships in 54 published datasets and show that empirical data better fit the unimodal pattern predicted by the area–heterogeneity tradeoff than the positive pattern predicted by classic niche theory. Simulations in which species may have variable niche widths along a continuous environmental gradient are consistent with all empirical findings. The area–heterogeneity tradeoff brings a unique perspective to current theories of species diversity and has important implications for biodiversity conservation.
Located in Resources / Climate Science Documents
File PDF document Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss
The extent to which biodiversity change in local assemblages contributes to global biodiversity loss is poorly understood. We analyzed 100 time series from biomes across Earth to ask how diversity within assemblages is changing through time. We quantified patterns of temporal a diversity, measured as change in local diversity, and temporal b diversity, measured as change in community composition. Contrary to our expectations, we did not detect systematic loss of a diversity. However, community composition changed systematically through time, in excess of predictions from null models. Heterogeneous rates of environmental change, species range shifts associated with climate change, and biotic homogenization may explain the different patterns of temporal a and b diversity. Monitoring and understanding change in species composition should be a conservation priority.
Located in Resources / Climate Science Documents
Assessing climate-sensitive ecosystems in the southeastern United States
The southeastern U.S. contains a unique diversity of ecosystems that provide important benefits, including habitat for wildlife and plants, water quality, and recreation opportunities. As climate changes, a better understanding of how our ecosystems will be affected is vital for identifying strategies to protect these ecosystems.
Located in News & Events / Events
Project ECMAScript program Assessing climate-sensitive ecosystems in the southeastern United States
The southeastern U.S. contains a unique diversity of ecosystems that provide important benefits, including habitat for wildlife and plants, water quality, and recreation opportunities. As climate changes, a better understanding of how our ecosystems will be affected is vital for identifying strategies to protect these ecosystems. While information on climate change affects exists for some ecosystems and some places, a synthesis of this information for key ecosystems across the entire Southeast will enable regional decision-makers, including the LCCs, to prioritize current efforts and plan future research and monitoring.
Located in Research
File PDF document Assessing potential climate change effects on vegetation using a linked model approach
We developed a process that links the mechanistic power of dynamic global vegetation models with the detailed vegetation dynamics of state-and-transition models to project local vegetation shifts driven by projected climate change. We applied our approach to central Oregon (USA) ecosystems using three climate change scenarios to assess potential future changes in species composition and community structure. Our results suggest that: (1) legacy effects incorporated in state-and-transition models realistically dampen climate change effects on vegetation; (2) species-specific response to fire built into state-and- transition models can result in increased resistance to climate change, as was the case for ponderosa pine (Pinus ponderosa) forests, or increased sensitivity to climate change, as was the case for some shrublands and grasslands in the study area; and (3) vegetation could remain relatively stable in the short term, then shift rapidly as a consequence of increased disturbance such as wildfire and altered environmental conditions. Managers and other land stewards can use results from our linked models to better anticipate potential climate-induced shifts in local vegetation and resulting effects on wildlife habitat.
Located in Resources / Climate Science Documents