Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Biogenic vs. geologic carbon emissions and forest biomass energy production
n the current debate over the CO2 emissions implications of switching from fossil fuel energy sources to include a substantial amount of woody biomass energy, many scientists and policy makers hold the view that emissions from the two sources should not be equated. Their rationale is that the combustion or decay of woody biomass is simply part of the global cycle of biogenic carbon and does not increase the amount of carbon in circulation. This view is frequently presented as justification to implement policies that encourage the substitution of fossil fuel energy sources with biomass. We present the opinion that this is an inappropriate conceptual basis to assess the atmospheric greenhouse gas (GHG) accounting of woody biomass energy generation. While there are many other environmental, social, and economic reasons to move to woody biomass energy, we argue that the inferred benefits of biogenic emissions over fossil fuel emissions should be reconsidered. Keywords: bioenergy emissions, biogenic carbon, carbon debt, forest biomass, greenhouse gas accounting
Located in Resources / Climate Science Documents
File PDF document Comparing carbon sequestration in temperate freshwater wetland communities
High productivity and waterlogged conditions make many freshwater wetlands significant carbon sinks. Most wet- land carbon studies focus on boreal peatlands, however, with less attention paid to other climates and to the effects of hydrogeomorphic settings and the importance of wetland vegetation communities on carbon sequestration. This study compares six temperate wetland communities in Ohio that belong to two distinct hydrogeomorphic types: an isolated depressional wetland site connected to the groundwater table, and a riverine flow-through wetland site that receives water from an agricultural watershed. Three cores were extracted in each community and analyzed for total carbon content to determine the soil carbon pool. Sequestration rates were determined by radiometric dating with 137Cs and 210Pb on a set of composite cores extracted in each of the six communities. Cores were also extracted in uplands adjacent to the wetlands at each site. Wetland communities had accretion rates ranging from 3.0 to 6.2 mm yr␣1. The depressional wetland sites had higher (P < 0.001) organic content (146 ± 4.2 gC kg␣1) and lower (P < 0.001) bulk density (0.55 ± 0.01 Mg m␣3) than the riverine ones (50.1 ± 6.9 gC kg␣1 and 0.74 ± 0.06 Mg m␣3). The soil carbon was 98–99% organic in the isolated depressional wetland communities and 85–98% organic in the riv- erine ones. The depressional wetland communities sequestered 317 ± 93 gC m␣2 yr␣1, more (P < 0.01) than the river- ine communities that sequestered 140 ± 16 gC m␣2 yr␣1. The highest sequestration rate was found in the Quercus palustris forested wetland community (473 gC m␣2 yr␣1), while the wetland community dominated by water lotus (Nelumbo lutea) was the most efficient of the riverine communities, sequestering 160 gC m␣2 yr␣1. These differences in sequestration suggest the importance of addressing wetland types and communities in more detail when assessing the role of wetlands as carbon sequestering systems in global carbon budgets. Keywords: 137Cs, 210Pb, carbon accumulation, Gahanna Woods, Nelumbo lutea, Old Woman Creek, Phragmites australis, Quercus palustris, wetland community, wetland hydrgeomorphology
Located in Resources / Climate Science Documents
File PDF document Climate change, income and happiness: An empirical study for Barcelona
The present article builds upon the results of an empirical study exploring key factors which determine life satisfaction in Barcelona. Based on a sample of 840 individuals we first look at the way changes in income, notably income reductions, associated with the current economic situation in Spain, affect subjective well-being. Income decreases which occur with respect to one year ago have a negative effect on happiness when specified in logarithmic terms, and a positive one when specified as a dummy variable (and percentage change). The divergence in results is discussed and various explanations are put forward. Both effects are however temporary and do not hold for a period longer than a year, probably for reasons of adaptation and a downward adjustment of reference consumption and income levels. Next, we examine the implications of experiencing forest fires and find a lasting negative effect on life satisfaction. Our results suggest that climate policy need not reduce happiness in the long run, even when it reduces income and carbon-intensive consumption. Climate policy may even raise life well- being, if accompanied by compensatory measures that decrease formal working hours and reference consumption standards, while maintaining employment security.
Located in Resources / Climate Science Documents
File PDF document Classification of Climate Change-Induced Stresses on Biological Diversity
Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. Keywords: adaptation, conservation, strategies,adaptive management,climatechange,conservation planning, conservation targets, hierarchical framework, threats to biological diversity
Located in Resources / Climate Science Documents
File PDF document Climate change and the world economy: short-run determinants of atmospheric CO2
Volcanic eruptions, the El Nin ̃ o Southern oscillation (ENSO), world population, and the world economy are the four variables usually discussed as influencing the short-run changes in CO2 atmospheric levels through their influence on CO2 emissions and sinks. Using proper procedures of detrending, we do not find any observable relation between the short-term growth of world population and the increase of CO2 concentrations. Results suggest that the link between volcanic eruptions, ENSO activity, and CO2 concentrations may be confounded by the coincidence of the Pinatubo eruption with the breakdown of the economies of the Soviet Bloc in the early 1990s. Changes in world GDP (WGDP) have a significant effect on CO2 concentrations, so that years of above-trend WGDP are years of greater rise of CO2 concentrations. Measuring WGDP in constant US dollars of 2000, for each trillion WGDP deviates from trend, the atmospheric CO2 concentration has deviated from trend, in the same direction, about half a part per million.
Located in Resources / Climate Science Documents
File PDF document Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006
Much of the discussion on climate change and water in the western United States centers on decreased snowpack and earlier spring runoff. Although increasing variability in annual flows has been noted, the nature of those changes is largely unexplored. We tested for trends in the distribution of annual runoff using quantile regression at 43 gages in the Pacific Northwest. Seventy-two percent of the stations showed significant (a = 0.10) declines in the 25th percentile annual flow, with half of the stations exceeding a 29% decline and a maximum decline of 47% between 1948 and 2006. Fewer stations showed statistically significant declines in either median or mean annual flow, and only five had a significant change in the 75th percentile, demonstrating that increases in variance result primarily from a trend of increasing dryness in dry years. The asymmetric trends in streamflow distributions have implications for water management and ecology well beyond those of shifted timing alone, affect both rain and snow-dominated watersheds, and contribute to earlier timing trends in high- elevation watersheds.
Located in Resources / Climate Science Documents
File PDF document Climate commitment in an uncertain world
Climate commitment—the warming that would still occur given no further human influence—is a fundamental metric for both science and policy. It informs us of the minimum climate change we face and, moreover, depends only on our knowledge of the natural climate system. Studies of the climate commitment due to CO2 find that global temperature would remain near current levels, or even decrease slightly, in the millennium following the cessation of emissions. However, this result overlooks the important role of the non‐CO2 greenhouse gases and aerosols. This paper shows that global energetics require an immediate and sig- nificant warming following the cessation of emissions as aerosols are quickly washed from the atmosphere, and the large uncertainty in current aerosol radiative forcing implies a large uncertainty in the climate commitment. Fundamental constraints preclude Earth returning to pre‐industrial temperatures for the indefinite future. These same constraints mean that observations are currently unable to eliminate the possibility that we are already beyond the point where the ultimate warming will exceed dangerous levels. Models produce a narrower range of climate commitment, but under- sample observed forcing constraints.
Located in Resources / Climate Science Documents
File PDF document Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models
We find a consistent and statistically significant increase in the intensity of future extreme winter precipitation events over the western United States, as simulated by an ensemble of regional climate models (RCMs) driven by IPCC AR4 global climate models (GCMs). All eight simulations analyzed in this work consistently show an increase in the intensity of extreme winter precipitation with the multi-model mean projecting an area-averaged 12.6% increase in 20-year return period and 14.4% increase in 50-year return period daily precipitation. In contrast with extreme precipitation, the multi-model ensemble shows a decrease in mean winter precipitation of approximately 7.5% in the southwestern US, while the interior west shows less statistically robust increases.
Located in Resources / Climate Science Documents
File PDF document Assessing potential climate change effects on vegetation using a linked model approach
We developed a process that links the mechanistic power of dynamic global vegetation models with the detailed vegetation dynamics of state-and-transition models to project local vegetation shifts driven by projected climate change. We applied our approach to central Oregon (USA) ecosystems using three climate change scenarios to assess potential future changes in species composition and community structure. Our results suggest that: (1) legacy effects incorporated in state-and-transition models realistically dampen climate change effects on vegetation; (2) species-specific response to fire built into state-and- transition models can result in increased resistance to climate change, as was the case for ponderosa pine (Pinus ponderosa) forests, or increased sensitivity to climate change, as was the case for some shrublands and grasslands in the study area; and (3) vegetation could remain relatively stable in the short term, then shift rapidly as a consequence of increased disturbance such as wildfire and altered environmental conditions. Managers and other land stewards can use results from our linked models to better anticipate potential climate-induced shifts in local vegetation and resulting effects on wildlife habitat.
Located in Resources / Climate Science Documents
File PDF document Carbon Dynamics of the Forest Sector
Main points: The basic ecosystem science behind carbon dynamics in forests is relatively straightforward (really!).This science doesn’t seem to be applied very routinely in the policy arena. This mismatch is undermining the potential of the forest sector in helping to mitigate greenhouse gases in the atmosphere
Located in Resources / Climate Science Documents