Designing Sustainable Landscapes in the Northeast A project of the North Atlantic Landscape Conservation Cooperative & Northeast Climate Science Center

Landscape Conservation Design August, 2014 Landscape Conservation Design Step 2: Design Conservation Network

Adaptive Landscape Conservation Design

Establish Conservation Goals & Objectives

Adjust ConNet Evaluate ConNet

Ecological Socio-cultural Economic Design ConNet

Implement ConNet

Monitor ConNet

Landscape Conservation Design Step 2: Design Conservation Network

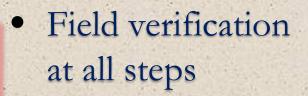
Review

Design Steps:

1. Select (tiered) core areas

2. Create core area buffers

3. Prioritize within buffered cores


4. Assess *connectivity* among cores

5. Prioritize among core areas Current

6. Prioritize <u>among</u> linkages focus

7. Prioritize within linkages

8. Identify *restoration* opportunities
 9. Determine *management* needs

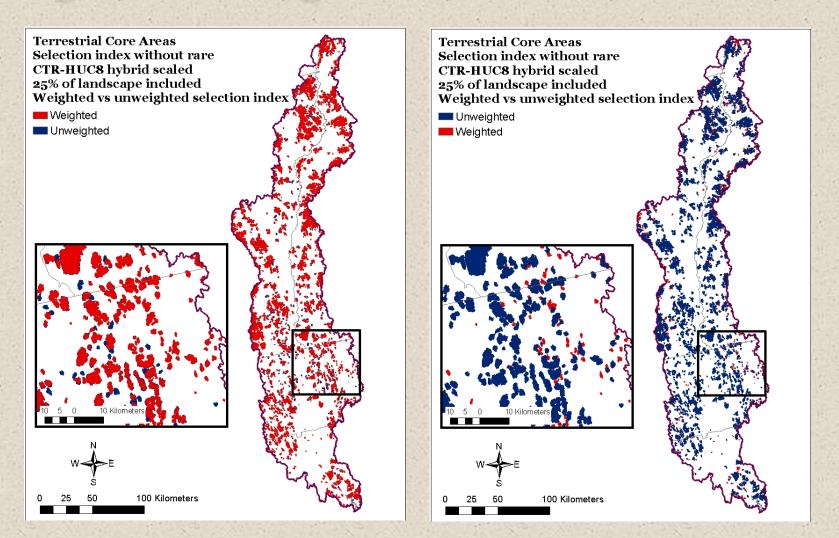
Socio-cultural and economic considerations at all steps

Step 2: Design Conservation Network

4. Assess connectivity among core areas

Core area scenarios:

- Ecosystem approach (coarse filter)...
 based solely on ecosystem conditions
 focus
- Species approach...
 based solely on focal species considerations
- Combined ecosystem-species approach... based on the complement of ecosystems and focal species


Step 2: Design Conservation Network

- 1-3. Create terrestrial (buffered) core areas
 - Weighted vs Unweighted selection index
 - CTR- vs HUC8- vs Hybrid-scaled selection index
 - With vs Without rare communities in selection index
 - 20% vs 25% vs 30% of landscape included in cores
 - Fewer/larger vs More/smaller cores

• Altogether, 24 alternatives considered

Step 2: Design Conservation Network

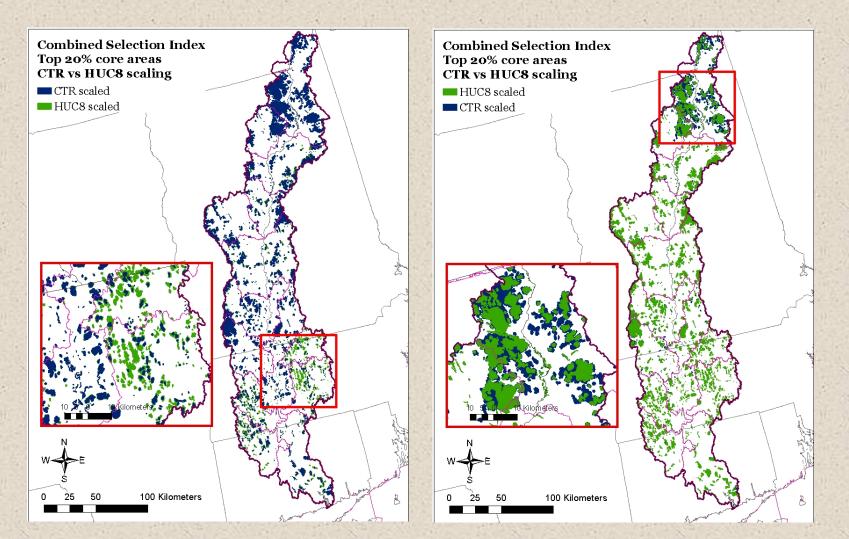
Weighted vs Unweighted selection index

Step 2: Design Conservation Network

Weighted vs Unweighted selection index

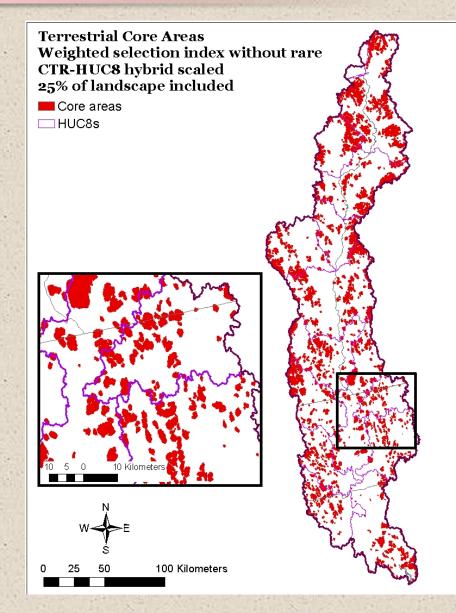
	· · · · · · · · · · · · · · · · · · ·		Unweighted	Weighted
Macrogroup	Weight	Area (ha)	% in Cores	% in Cores
Alpine	3	553	8.90	27.32
Cliff & Talus	1-3	16,505	34.23	34.53
Glade & Barren & Savanna	1	680	58.41	51.16
Outcrop & Summit Scrub	1-3	21,155	50.91	55.35
Ruderal Shrubland & Grassland	1	10,205	17.18	16.46
Coastal Grassland & Shrubland	3	22	33.20	33.20
Boreal Upland Forest	3	168,630	32.00	40.89
Central Oak-Pine	1-3	145,586	33.47	34.10
Northern Hardwood & Conifer	1	1,749,969	30.75	30.02
Central Hardwood Swamp	1	4,800	12.81	15.48
Coastal Plain Peat Swamp	1	78	25.12	25.00
Northeastern Floodplain Forest	3	469	6.54	6.81
Northern Swamp	1-3	80,673	21.47	23.50
Emergent Marsh	3	10,267	24.31	32.27
Ruderal Shrub Swamp	1	505	8.65	10.17
Wet Meadow / Shrub Marsh	3	20,960	18.74	27.17
Northern Peatland & Fens	3	3,044	30.19	37.86
То	tal	2,884,737	25.10	25.31

Step 2: Design Conservation Network

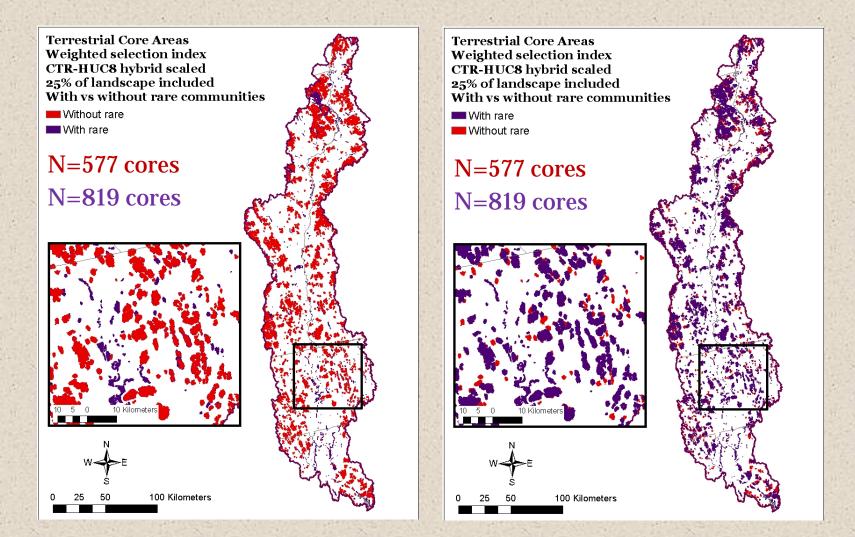

Weighted vs Unweighted selection index

			_	Unweighted	Weighted
Macrogroup	System	Weight	Area (ha)	% in Cores	% in Cores
Cliff & Talus	Laurentian-Acadian Acidic Cliff and Talus	1	5427	43.17	47.14
	Laurentian-Acadian Calcareous Cliff and Talus	3	4076	36.87	39.69
the main of the terms	North-Central Appalachian Acidic Cliff and Talus	1	3678	28.06	23.02
	North-Central Appalachian Circumneutral Cliff and Talus	1	3325	23.2	20.39
Outcrop &	Laurentian-Acadian Calcareous Rocky Outcrop	3	5567	42.63	44.43
Summit Scrub	Northern Appalachian-Acadian Rocky Heath Outcrop	1	15588	53.87	59.25
Central Oak-	Central Appalachian Dry Oak-Pine Forest	1	16570	46.95	42.75
Pine	Central Appalachian Pine-Oak Rocky Woodland	1	5549	43.08	38.88
	North Atlantic Coastal Plain Hardwood Forest	1	11833	41.23	36.66
	North Atlantic Coastal Plain Maritime Forest	1	36	10.47	10.22
A. Seller Meth	Northeastern Interior Dry-Mesic Oak Forest: moist-cool	1	10548	20.72	23.67
A Starter	Northeastern Interior Dry-Mesic Oak Forest: typic	1	100416	31.35	33.42
	Northeastern Interior Pine Barrens	3	634	0.06	0.64

Contrary results due to integrated selection index


Step 2: Design Conservation Network

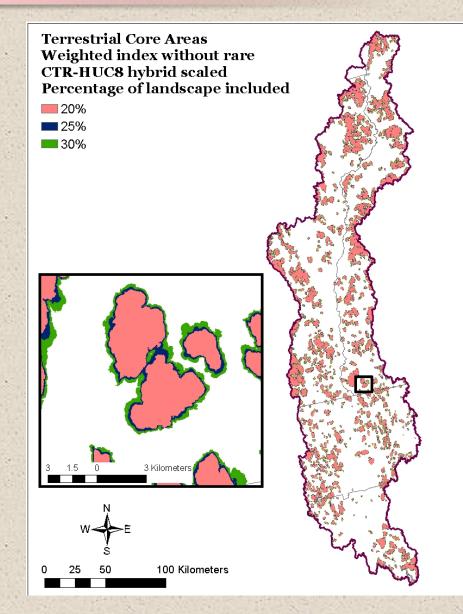
CTR- vs HUC8-scaled selection index


Step 2: Design Conservation Network

 CTR-HUC8 Hybridscaled selection index

Step 2: Design Conservation Network

• With vs Without rare communities


Step 2: Design Conservation Network

With vs Without rare communities

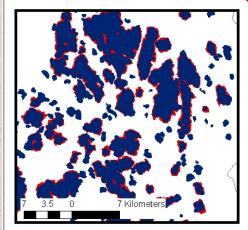
		Without Rare	With Rare
Macrogroup	Area (ha)	% in Cores	% in Cores
Alpine	553	27.32	100.00
Cliff & Talus	16,505	34.53	39.01
Glade & Barren & Savanna	680	51.16	50.21
Outcrop & Summit Scrub	21,155	55.35	48.90
Ruderal Shrubland & Grassland	10,205	16.46	16.65
Coastal Grassland & Shrubland	22	33.20	33.20
Boreal Upland Forest	168,630	40.89	36.15
Central Oak-Pine	145,586	34.10	26.71
Northern Hardwood & Conifer	1,749,969	30.02	27.13
Central Hardwood Swamp	4,800	15.48	37.86
Coastal Plain Peat Swamp	78	25.00	100.00
Northeastern Floodplain Forest	469	6.81	47.69
Northern Swamp	80,673	23.50	27.94
Emergent Marsh	10,267	32.27	31.72
Ruderal Shrub Swamp	505	10.17	21.80
Wet Meadow / Shrub Marsh	20,960	27.17	26.48
Northern Peatland & Fens	3,044	37.86	57.16
<i>T</i> e	otal 2,884,737	25.31	23.88

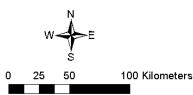
Step 2: Design Conservation Network

 20% vs 25% vs 30% of landscape included in cores

Step 2: Design Conservation Network

20% vs 25% vs 30% of landscape included in cores


			in Cores		
Macrogroup		Area (ha)	20%	25%	30%
Alpine	The West of a	553	19.15	27.32	41.13
Cliff & Talus		16,505	29.58	34.53	40.46
Glade & Barren & Savanna		680	46.86	51.16	55.78
Outcrop & Summit Scrub		21,155	48.59	55.35	62.26
Ruderal Shrubland & Grassland		10,205	12.98	16.46	20.88
Coastal Grassland & Shrubland		22	33.20	33.20	34.43
Boreal Upland Forest		168,630	35.80	40.89	46.65
Central Oak-Pine	AT HE ST &	145,586	30.29	34.10	39.15
Northern Hardwood & Conifer		1,749,969	25.31	30.02	36.08
Central Hardwood Swamp	22-5-34	4,800	14.35	15.48	16.99
Coastal Plain Peat Swamp		78	21.54	25.00	25.23
Northeastern Floodplain Forest	A	469	6.52	6.81	6.81
Northern Swamp		80,673	20.29	23.50	27.82
Emergent Marsh	1-1-1- (B) -	10,267	29.30	32.27	36.07
Ruderal Shrub Swamp	13 14 15 8	505	7.71	10.17	12.02
Wet Meadow / Shrub Marsh		20,960	23.95	27.17	31.64
Northern Peatland & Fens	-2. ·····	3,044	32.89	37.86	43.58
	Total	2,884,737	21.35	25.31	30.47


Step 2: Design Conservation Network

 Fewer/larger vs More/smaller cores Terrestrial Core Areas Weighted selection index without rare CTR-HUC8 hybrid scaled 25% of landscape included Fewer/larger vs more/smaller

More/smaller (min = 1.8 ha or 4.5 acres) Fewer/larger (min = 3.6 ha or 9 acres)

N=1,944 cores N=577 cores

Step 2: Design Conservation Network

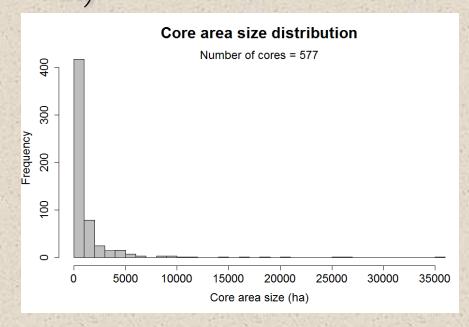
Fewer/larger vs More/smaller cores

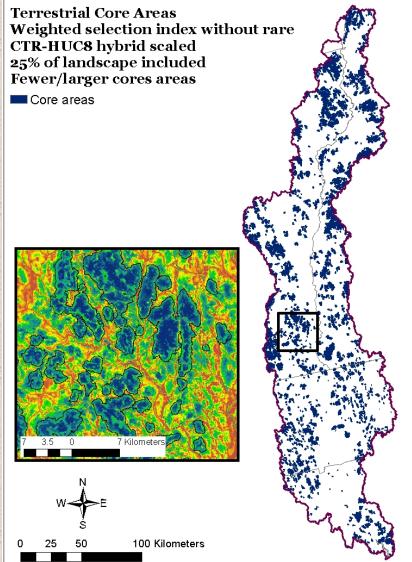
		% in Cores			
Macrogroup	Area (ha)	Fewer/larger	More/smaller		
Alpine	553	27.32	15.67		
Cliff & Talus	16,505	34.53	34.45		
Glade & Barren & Savanna	680	51.16	50.07		
Outcrop & Summit Scrub	21,155	55.35	50.89		
Ruderal Shrubland & Grassland	10,205	16.46	16.70		
Coastal Grassland & Shrubland	22	33.20	29.92		
Boreal Upland Forest	168,630	40.89	38.0		
Central Oak-Pine	145,586	34.10	36.5		
Northern Hardwood & Conifer	1,749,969	30.02	29.0		
Central Hardwood Swamp	4,800	15.48	23.8		
Coastal Plain Peat Swamp	78	25.00	55.4		
Northeastern Floodplain Forest	469	6.81	9.7		
Northern Swamp	80,673	23.50	27.6		
Emergent Marsh	10,267	32.27	42.5		
Ruderal Shrub Swamp	505	10.17	11.3		
Wet Meadow / Shrub Marsh	20,960	27.17	37.9		
Northern Peatland & Fens	3,044	37.86	43.0		
Τσ	otal 2,884,737	25.31	24.5		

Step 2: Design Conservation Network

Key Decisions regarding <u>terrestrial</u> core areas:

- Weighted or unweighted selection index?
- CTR-, HUC8-, or <u>Hybrid</u>-scaled selection index?
- With or <u>without</u> rare communities?
- 20%, <u>25%</u> or 30% of landscape included in cores?
- Fewer/larger or more/smaller cores?

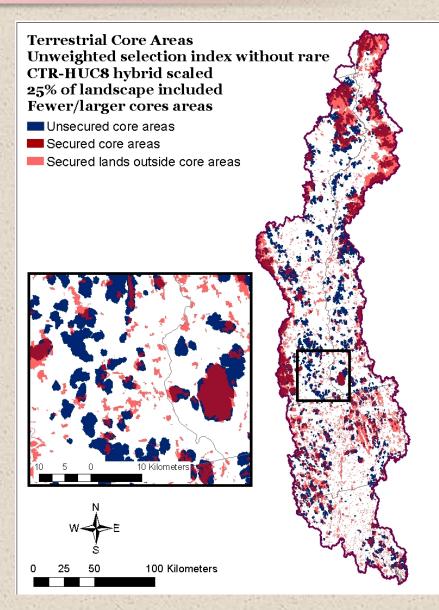



Step 2: Design Conservation Network

What does this core area network look like?

- 577 core areas
- Min size = 53 ha (130 ac)
- Max size = 35,294 ha (87,177

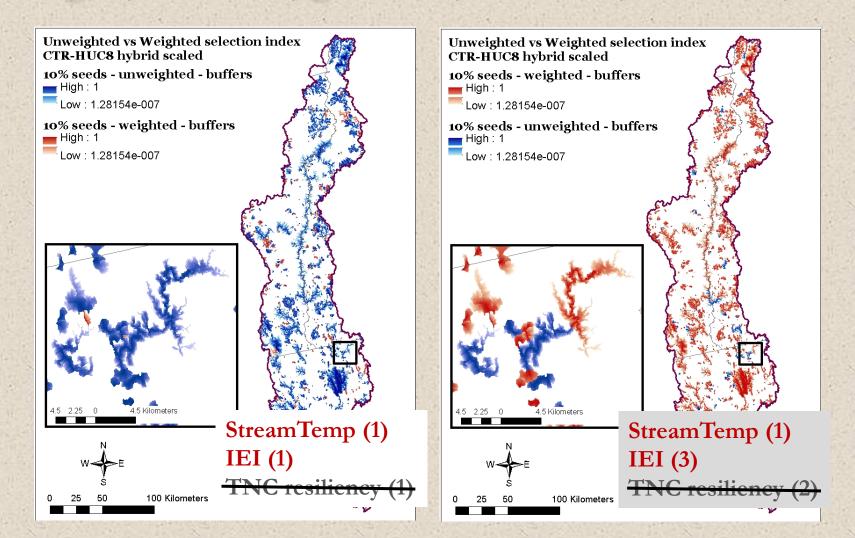
ac)



Step 2: Design Conservation Network

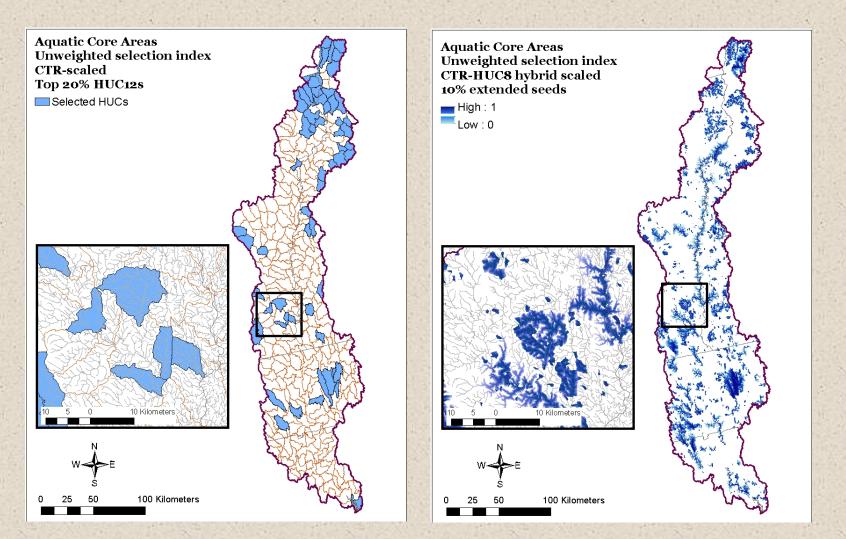
What does this core area network look like?

 50% of the core area is already secured


Step 2: Design Conservation Network

1-3. Create aquatic (buffered) core areas

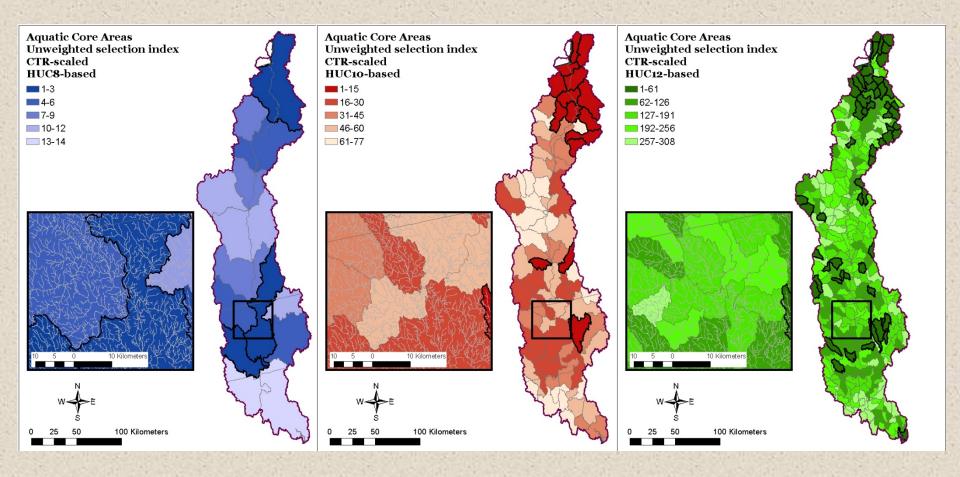
- Weighted vs Unweighted selection index
- HUC- vs Seed-based core areas <u>HUC-based</u>:
- HUC8-, 10-, vs 12-level
- Nested vs Non-nested hierarchy across HUC levels
 <u>Seed-based</u>:
- CTR- vs HUC8- vs Hybrid-scaled selection index
- Seeds- vs Extended seeds
- Minimum core area size (~150 m vs ~1 km)
- Percentage of landscape (5%, 10%, 20% seeds)
 - Altogether, 74 alternatives considered


Step 2: Design Conservation Network

Weighted vs Unweighted selection index

Step 2: Design Conservation Network

HUC- vs Seed-based core areas

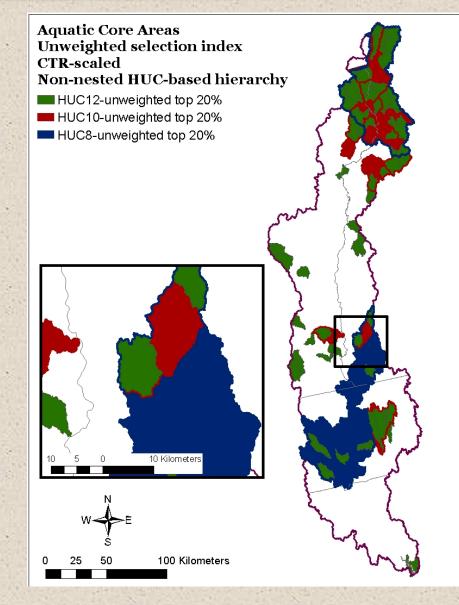

Step 2: Design Conservation Network

HUC- vs Seed-based core areas

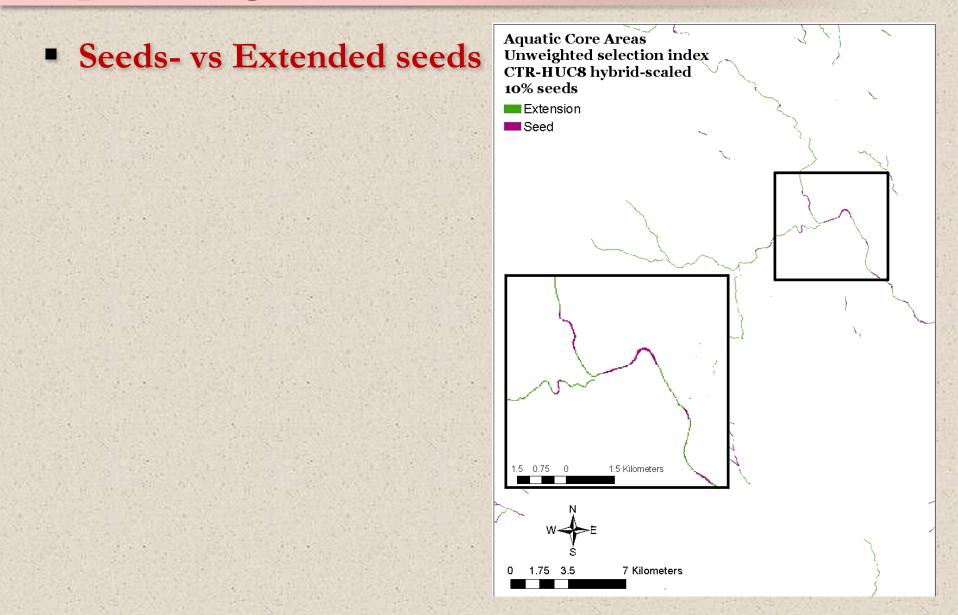
	Stream Length	% in	Cores
Macrogroup/System	(KM)	HUC12	Extended Seeds
Stream (headwater/creek) cold low	1,105	11.63%	5.89%
Stream (headwater/creek) cold moderate	3,227	15.99%	8.67%
Stream (headwater/creek) cold high	13,120	20.01%	10.23%
Stream (headwater/creek) cool low	896	4.50%	4.40%
Stream (headwater/creek) cool moderate	662	6.62%	5.74%
Stream (headwater/creek) cool high	70.0	7 9 9 0 ⁄	7.13%
Stream (headwa Note, these res	sults will char	nge	10.97%
Stream (headwa		C	6.36%
Stream (headwa somewhat if w	ve use the CI	'R-HUC	6.91%
Stream (small)	1 • • 1	C 1	10.98%
Stream (small) Hybrid scaled	selection inde	ex for th	1C 14.09%
Stroom (small)			32.92%
Stream (small) HUC-based an	nalysis		42.88%
Stream (medium) cold	103	38.41%	0.00%
Stream (medium) cool	399	1.24%	33.39%
Stream (medium) warm	118	2.47%	30.65%
Stream (large) cool	390	2.78%	49.77%
Stream (large) warm	21	0.00%	59.66 %
Freshwater tidal	131	0.00%	50.77%
Tota	<i>l</i> 22,395	16.18%	11.64%

Step 2: Design Conservation Network

• HUC8-, 10-, vs 12-level


Step 2: Design Conservation Network

• HUC8-, 10-, vs 12-level


	Stream	%	% in Cores			
Macrogroup/System	acrogroup/System Length (km) HUC8					
Stream (headwater/creek) cold low	1,105	22.48%	12.97%	11.63%		
Stream (headwater/creek) cold moderate	3,227	<mark>24.88%</mark>	15.91%	15.99%		
Stream (headwater/creek) cold high	13,120	<mark>22.82%</mark>	19.20%	20.01%		
Stream (headwater/creek) cool low	896	<mark>19.98%</mark>	1.55%	4.50%		
Stream (headwater/creek) cool moderate	662	24.18%	2.30%	6.62%		
Stream (headwater (apack) and high	700	10 900/	5 19%	7.88 %		
Stream (headwater (mock) cool high Stream (headwater Note, these re	sults will ch	ange	<mark>%</mark>	1.33%		
Stream (headw:			× × ×	0.58%		
Stream (headware somewhat if w	ve use the C	TR-HU	<u>C8 %</u>	0.32%		
Stream (small)	1	1 C	.1 %	14.70%		
Stream (small) Hybrid scaled	selection in	dex for	the %	20.35%		
Stream (small)	1 . : .		<mark>%</mark>	4.18 %		
Stream (small) HUC-based at	nalysis		%	4.72 %		
Stream (medium) cold	103	84.56%	84.59%	38.41%		
Stream (medium) cool	399	17.31%	0.03%	1.24%		
Stream (medium) warm	118	13.10%	2.47%	2.47 %		
Stream (large) cool	390	<mark>39.91%</mark>	8.79%	2.78%		
Stream (large) warm	21	0.00%	0.00%	0.00%		
Freshwater tidal	131	0.00%	0.00%	0.00%		
Tot	al 22,395	23.19%	16.24%	16.18 %		

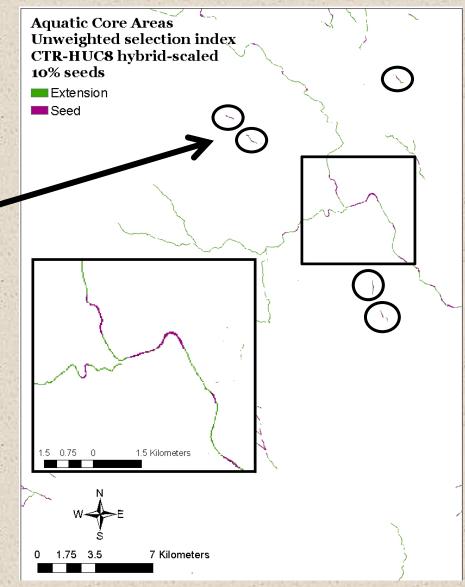
Step 2: Design Conservation Network

 Nested vs Non-nested hierarchy across HUC levels

Step 2: Design Conservation Network

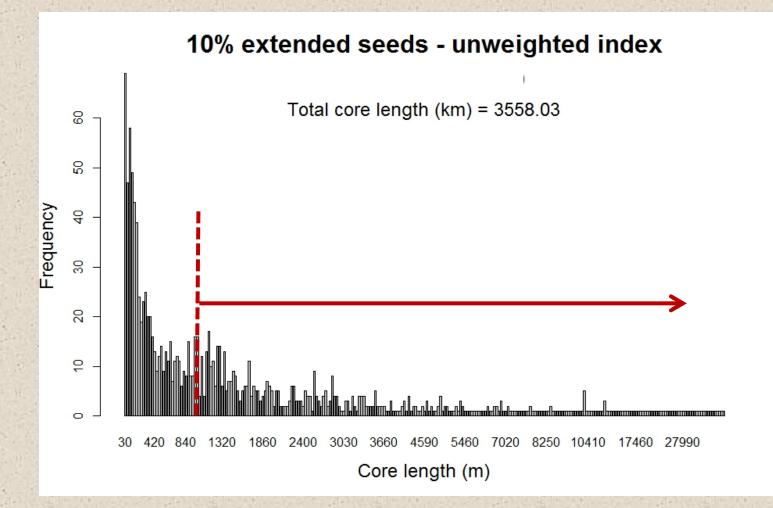
Step 2: Design Conservation Network

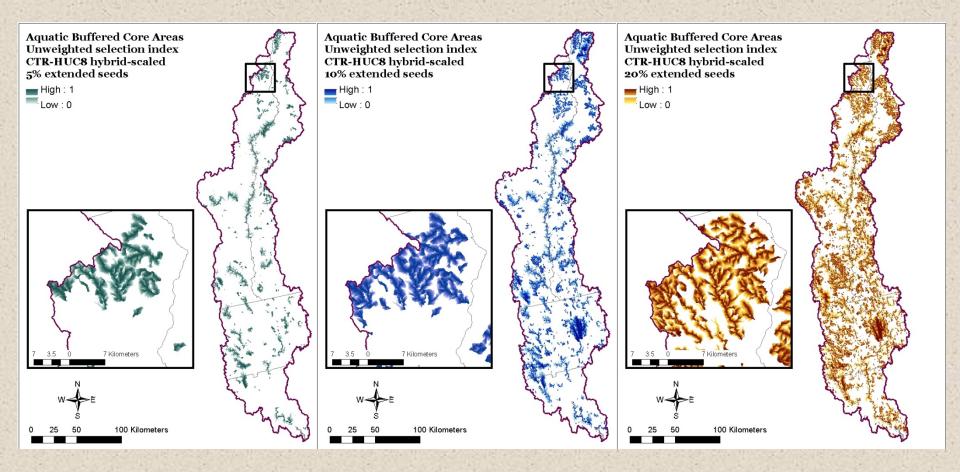
Seeds- vs Extended seeds


	Stream	Lgth (km) in Cores		s % in Cores	
Macrogroup/System	Length (km)	Seeds	Ext Seeds	Seeds	Ext Seeds
Stream (headwater/creek) cold low	1,105	20.49	65.10	1.85%	5.89%
Stream (headwater/creek) cold moderate	3,227	89.52	279.75	2.77%	8.67%
Stream (headwater/creek) cold high	13,120	465.03	1,342.44	3.54%	10.23%
Stream (headwater/creek) cool low	896	18.15	39.42	2.03%	4.40%
Stream (headwater/creek) cool moderate	662	17.13	37.95	2.59%	5.74%
Stream (headwater/creek) cool high	798	29.55	56.94	3.70%	7.13%
Stream (headwater/creek) warm low	77	5.01	8.40	6.54%	10.97%
Stream (headwater/creek) warm moderate	36	1.32	2.31	3.64%	6.36%
Stream (headwater/creek) warm high	46	1.26	3.21	2.71%	6.91%
Stream (small) cold low	176	2.07	19.35	1.18%	10.98%
Stream (small) cold moderate	455	8.70	64.11	1.91%	14.09%
Stream (small) cool low	266	21.45	87.51	8.07%	32.92%
Stream (small) cool moderate	370	28.62	158.52	7.74%	42.88%
Stream (medium) cold	103	-	-	0.00%	0.00%
Stream (medium) cool	399	17.22	133.08	4.32%	33.39%
Stream (medium) warm	118	8.04	36.09	6.83%	30.65%
Stream (large) cool	390	54.15	194.13	13.88%	49.77%
Stream (large) warm	21	4.44	12.60	21.02%	59.66%
Freshwater tidal	131	20.40	66.51	15.57%	50.77%
Tota	al 22,395	812.55	2,607.42	3.63%	11.64%

Step 2: Design Conservation Network

 Minimum core area size (~150 m vs ~1 km)


Drop seeds < ~150 m and extended seeds < ~1 km


Step 2: Design Conservation Network

Minimum core area size (~150 m vs ~1 km)

Step 2: Design Conservation Network

Percentage of landscape (5%, 10%, 20% seeds)

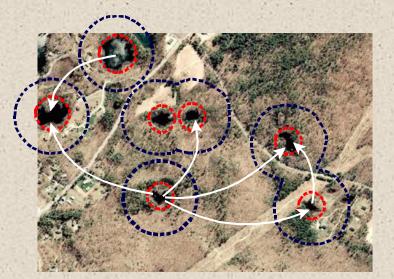
Step 2: Design Conservation Network

Percentage of landscape (5%, 10%, 20% seeds)

	Strm Lngth -	XSeeds	Strm Lngt	rm Lngth (km)		% in Cores		
Macrogroup/System	(km)	5%	10%	20%	5%	10%	20%	
Stream (headwater/creek) cold low	65	26.07	65.1	176.70	<mark>2.36%</mark>	5.89%	15.99%	
Stream (headwater/creek) cold moderate	280	103.32	279.75	695.55	3.20%	8.67%	21.55%	
Stream (headwater/creek) cold high	1,342	387.36	1342.44	3,655.59	2.95%	10.23%	27.86%	
Stream (headwater/creek) cool low	39	9.36	39.42	137.22	1.04%	4.40%	15.32%	
Stream (headwater/creek) cool moderate	38	11.13	37.95	118.20	1.68%	5.74%	17.87%	
Stream (headwater/creek) cool high	57	19.53	56.94	156.84	2.45%	7.13%	19.65%	
Stream (headwater/creek) warm low	8	2.85	8.4	14.40	3.72%	10.97%	18.80%	
Stream (headwater/creek) warm moderate	2	0.21	2.31	5.10	0.58%	6.36%	14.05%	
Stream (headwater/creek) warm high	3	1.14	3.21	8.85	2.45%	6.91%	19.06%	
Stream (small) cold low	19	15.39	19.35	55.86	8.74%	10.98%	31.71%	
Stream (small) cold moderate	64	36.24	64.11	178.65	7.96%	14.09%	39.26%	
Stream (small) cool low	88	51.60	87.51	163.05	19.41%	32.92%	61.34%	
Stream (small) cool moderate	159	99.96	158.52	246.36	27.04%	42.88 %	66.63%	
Stream (medium) cold	1	-	0	2.40	0.00%	0.00%	2.34%	
Stream (medium) cool	133	88.20	133.08	229.74	22.13%	33.39%	57.64%	
Stream (medium) warm	36	13.50	36.09	76.62	11.46%	30.65%	65.07%	
Stream (large) cool	194	137.25	194.13	260.37	35.19%	49 .77%	66.76%	
Stream (large) warm	13	12.57	12.6	20.94	59.52%	59.66%	99.15%	
Freshwater tidal	67	42.06	66.51	102.99	32.10%	50.77%	78.61%	
Tota	2,607	1,057.74	2607.42	6,305.43	4.72%	11.64%	28.16%	

Step 2: Design Conservation Network

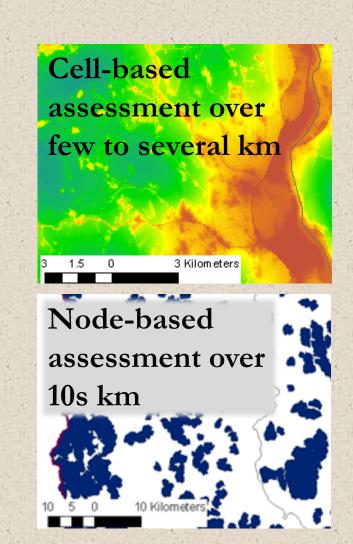
Key Decisions regarding aquatic core areas:


- Weighted or <u>Unweighted</u> selection index?
- HUC- or <u>Seed-based</u> core areas?
- CTR-, HUC8-, or <u>Hybrid-scaled</u> selection index?
- Seed- or <u>Extended seed</u>-based cores?
- Minimum core area size?
- Percentage of landscape?

Step 2: Design Conservation Network

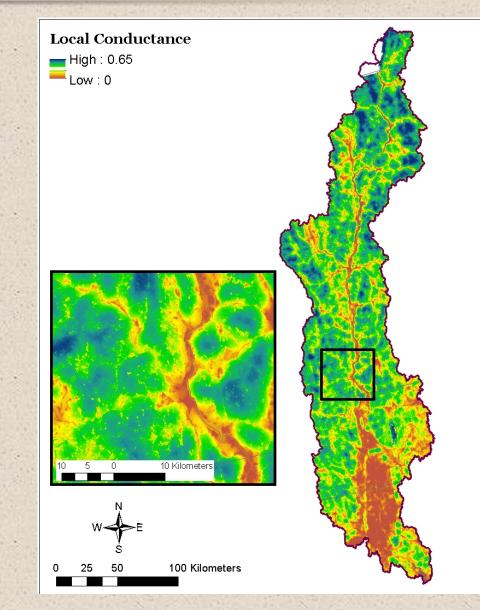
4. Assess connectivity

- Local connectivity refers to the spatial scale at which individual organisms interact directly with the landscape via demographic processes such as dispersal and home range movements
- <u>Regional connectivity</u> refers to the scale at which populations through time indirectly interact with the landscape (e.g., through gene flow over multiple generations)



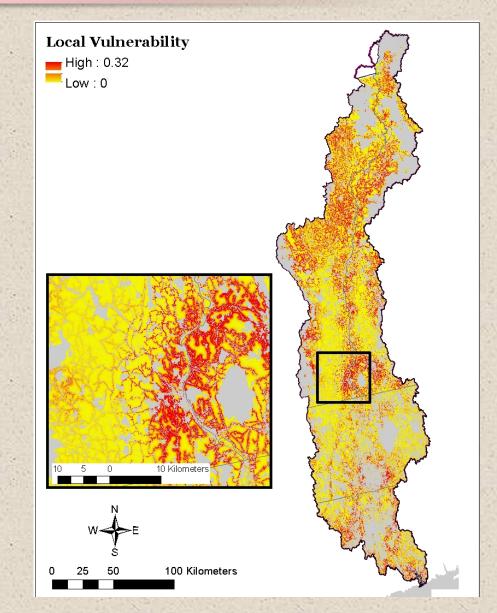
Step 2: Design Conservation Network

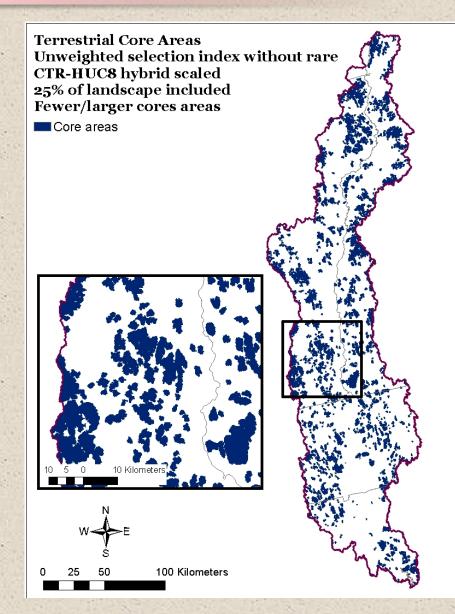
4. Assess connectivity


- Local connectivity refers to the spatial scale at which individual organisms interact directly with the landscape via demographic processes such as dispersal and home range movements
- <u>Regional connectivity</u> refers to the scale at which populations through time indirectly interact with the landscape (e.g., through gene flow over multiple generations)

Step 2: Design Conservation Network

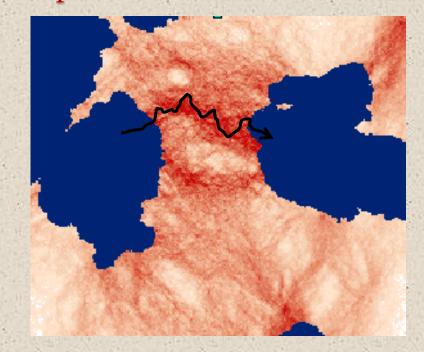
- 4. Assess local connectivity
 - Local conductance
 - Local vulnerability

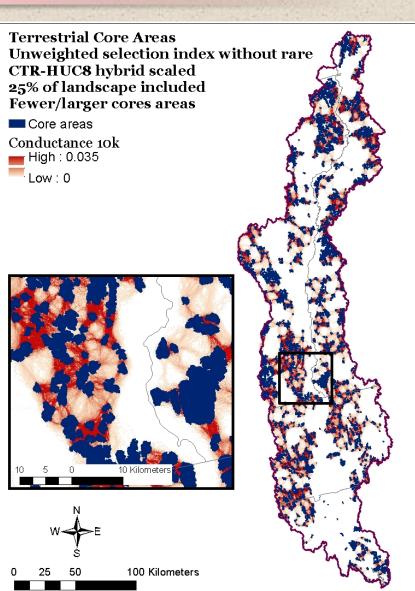

 Relative probability of flow through a cell from nearby cells (function of local resistance)

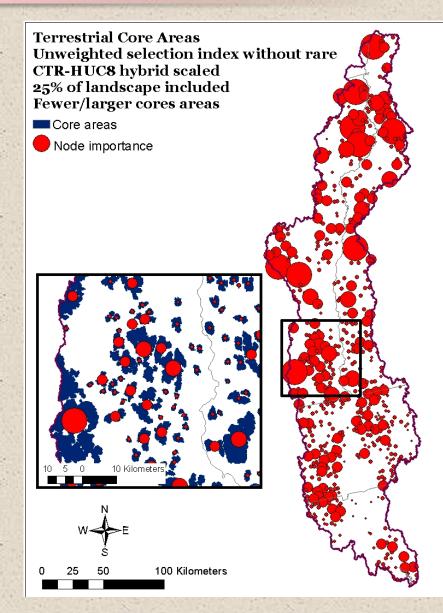

Step 2: Design Conservation Network

- 4. Assess local connectivity
 - Local conductance
 - Local vulnerability

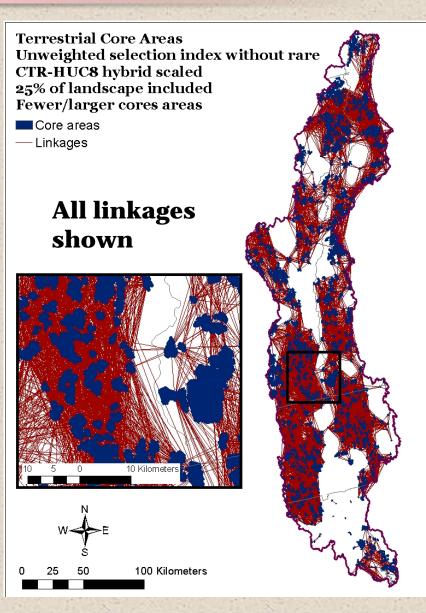
• Relative probability of developing a cell with high local conductance

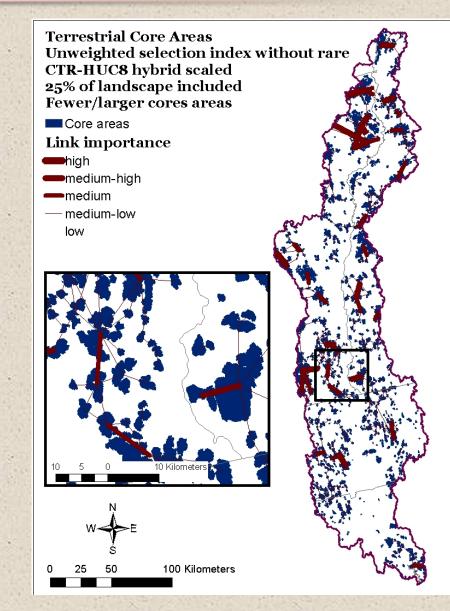


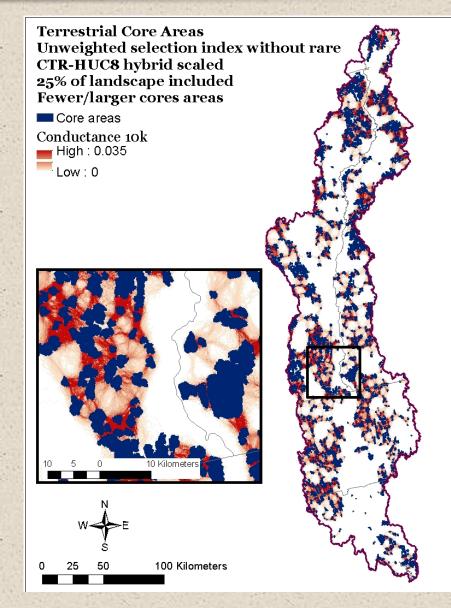

- 4. Assess regional connectivity among terrestrial core areas
 - Connectivity is based on a designated core area network

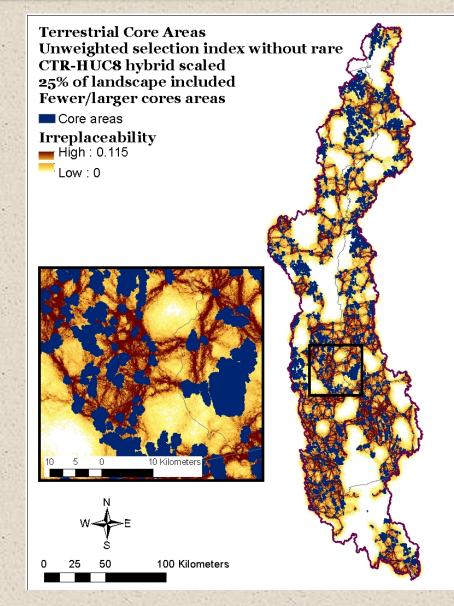

Step 2: Design Conservation Network

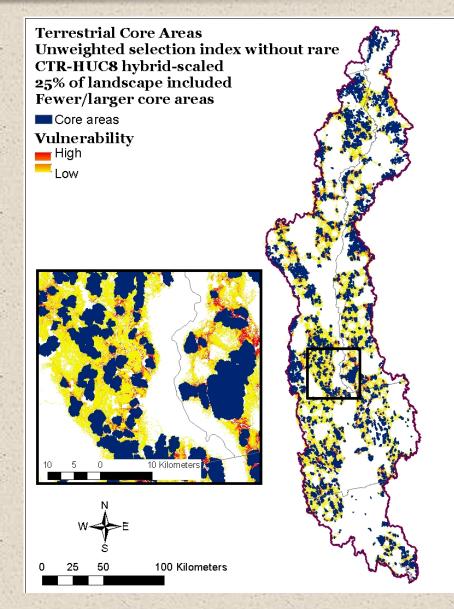
4. Assess regional connectivity among core areas
a) Build random low cost paths between cores

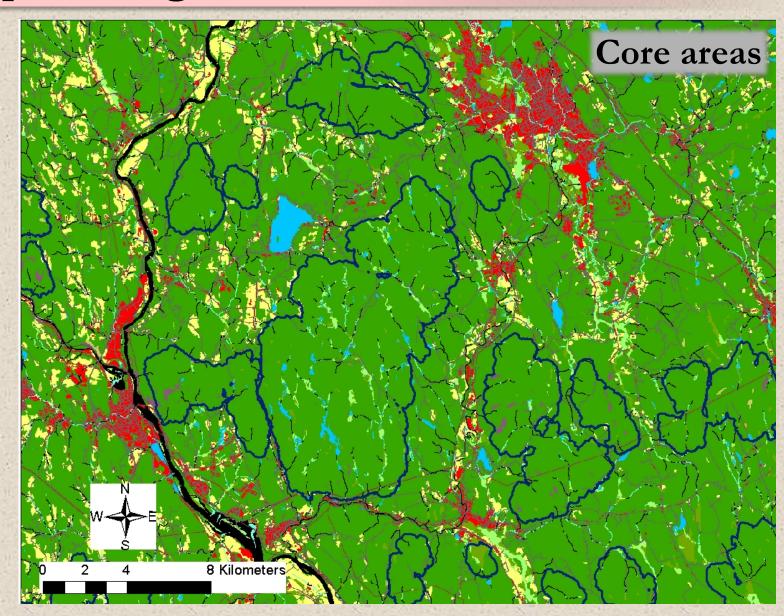


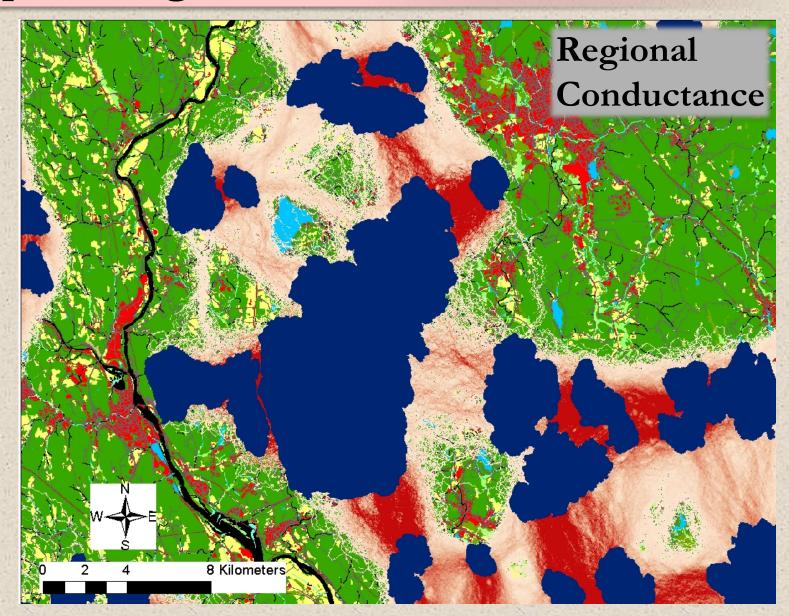

- 5. Prioritize among core areas
 - Node importance index
 - Based on node contribution to the probability of connectivity (PC) of the network

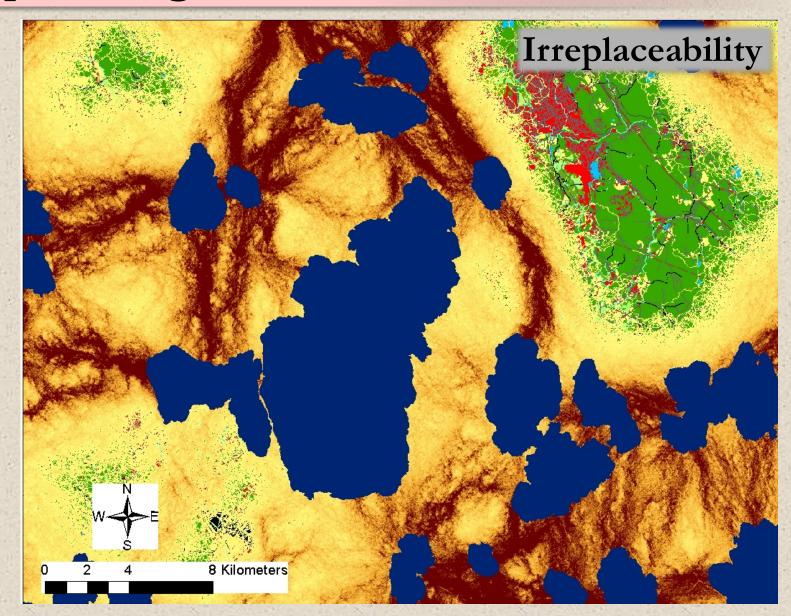

- 6. Prioritize among linkages
 - Link importance index
 - Based on link contribution to the probability of connectivity (PC) of the network

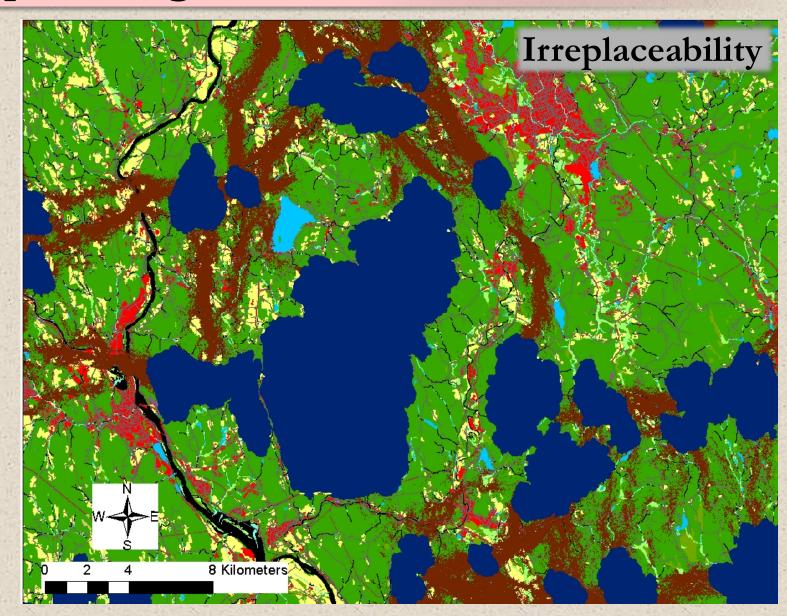

- 6. Prioritize among linkages
 - Link importance index
 - Based on link contribution to the probability of connectivity (PC) of the network

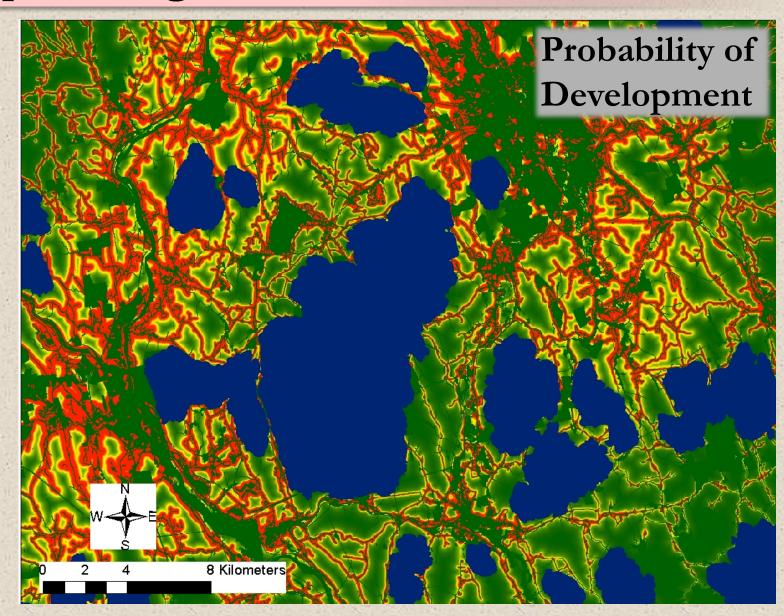

- 7. Prioritize within linkages
 - Regional conductance
 - Irreplaceability
 - Regional vulnerability
 - Relative probability of flow through a cell (function of local resistance, node size, quality and proximity)

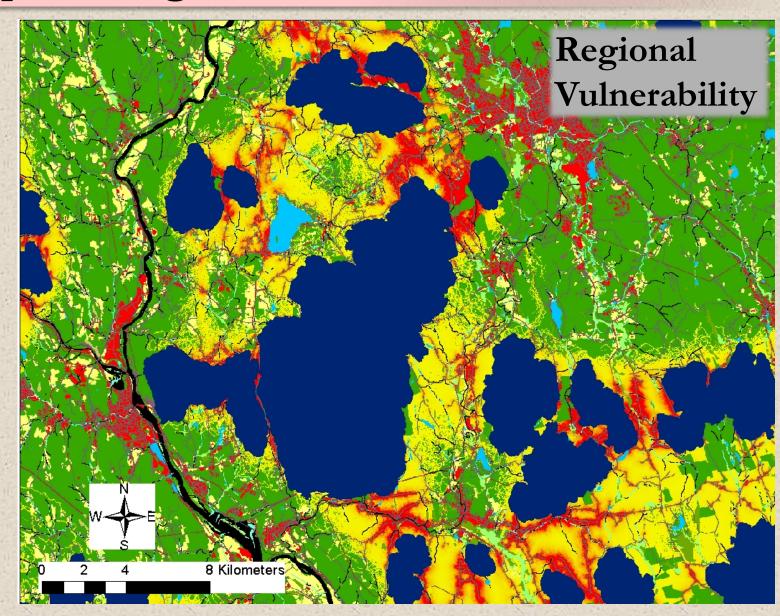


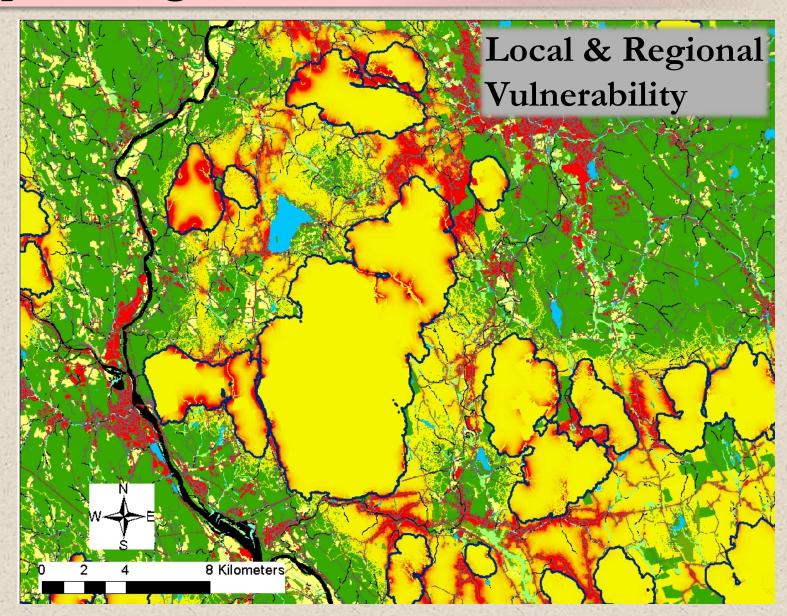

- 7. Prioritize within linkages
 - Regional conductance
 - Irreplaceability
 - Regional vulnerability
 - Relative concentration of paths through a cell (function of local resistance and path irreplaceability)




- 7. Prioritize within linkages
 - Regional conductance
 - Irreplaceability
 - Regional vulnerability
 - Relative probability of developing an irreplaceable cell that has a high relative probability of use







For More Information

Project website:

www.umass.edu/landeco/research/dsl/dsl.html

RMLands

	UMass Landscape Ecology Eab	
Home About	People Publications Presentations Research Teaching	Opportunities
DSL	Designing Sustainable Landscapes	Quicklinks
Home	The overall purpose of this project (known colloquially as the Designing Sustainable	DSL
DSL Documentation	Landscapes project, or DSL for short) is to assess the capability of current and potential future landscapes, currently within the extent of the Northeast (13 states), to provide integral ecosystems and suitable habitat for a suite of focal (e.g., representative) species, and provide guidance for strategic habitat conservation. To meet this goal, we are developing a Landscape Change, Assessment and Design (LCAD) model, as described in the documentation. This project is supported primarily by the North Atlantic Landscape Conservation Cooperative (NALCC) with additional support from the Northeast Climate Science Center (NECSC) and the University of Massachusets - Amherst.	FRAGSTATS
DSL		CAPS
Presentations		HABIT
DSL		PMI anda

Links to products: •Overview •Technical docs •Presentations •Results

Products

Feedback:

Manager online survey

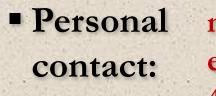
North Atlantic Landscape Conservation Cooperative Designing Sustainable Landscapes (DSL) Project

Mass Landscape Ecology Lab: Kevin McGargal, Brad Compton, Ethan Plunkett, Bill DeLuca, Lir Willey and Joanna Grand .

Manager Feedback and Questionaire

This document is intended primarly for participants of the sub-regional workshops being held with partners of the North Alberts, Landscape Conservation Coopenative (Net, CC) to review the results and provide Hedback on phase of the DS, project, Albergah any NetCC partners is verticante to provide Fedback Specificatly, the document include a set of questions posed to partners concerning how best to package the landscape design information resulting from the Landscape Change, assessmint and obegin (LCAI) model applied to the entire Northeat in Phase 2.

Criteria for Feedback


The DS, project aims to provide regionally consistent information pertaining to blockivensity conservation planning and management across the Northwesk. With this am in minit, it is important to recognize the following corters when providing feedback: [...] Al (CAO data producks must be regional (e..., Northwesk) this extent. There are bes of data that would be used to LCAD, for example digital parcel land use anong data, if they were variable becross the Northwesk, With are restricted to the use of digital data that are consistent across the Northwesk. 2), Approaches for modeling landscape change, assessment and degin must be clenkingly leasible given available data and current computing resources. There may be kleal approaches that are not computationally leasible given available data and/or computing resources.

General topics

1) When the LCAD model is extended to the entire Northeast in phase 2, what is the best set of geographic tiles (units) for rescaling ecological integrity and summarizing the model results?

- 🔄 By state
- By watershed (indicated preferred HUC level in the comment box below)
- By ecoregion (indicated preferred ecoregion classification and level in the comment box below)

Other (describe alternative tiling scheme in the comment box below)

mcgarigalk@ eco.umass.edu 413-577-0655