Reserve Design Activity

Delivered by: Trevor Wiens

Materials provided by:
PacMARA
info@pacmara.org

PacMARA
Pacific Marine Analysis \& Research Association

Based on materials developed by:
Matthew Watts, Lindsay Kircher, and Hugh Possingham

The University

Exercise 1

Objectives:

- Represent target amount for feature 1, 2, 3
- Minimize cost
- Consider spatial configuration: Try to ensure that most of the selected planning units are adjacent to at least one other planning unit

Planning Unit ID and its cost: PUID_COST

Area occupied by each biogeoclimatic zone in each square: BZ1_BZ2_BZ3

Spreadsheet computes "target gap" and "cost"

Consider clumping

- Count the number of outside edges
- Each edge counts * 100

12 edges * $100=1200$

8 edges $* 100=800$

Begin Reserve Design Activity

Follow the instructions on the worksheet, using the spreadsheet and the maps:

- Worksheet: Reserve Design Activity Maps.doc or .pdf
- Spreadsheet: Reserve_design_activity.xls
- "Maps": on page 7 of the course manual

Online Reserve Design Exercise

$\triangle D P \cap P \cap S$ Information
 Systems

Conservation Planning Excercise
Systematic conservation planning involves many steps including identifying stakeholders and identifying critical information and developing realistic conservation targets. Marxan is designed to solve the minimum set problem selecting areas to meet targets with the lowest possible cost. Below is a simple exercise to help you understand this process.
Click on the squares below to select or deselect a planning unit. The goal is to select planning units that total to meet the target values with lowest possible cost. On the right is a list of three conservation features, the targets for those features, and their current totals. When a target is reached for a feature, a check mark will appear to far right.
To understand the effects of clumped vs dispersed solutions try the exercise first without trying to clump or group the planning units and then do it again keeping them clustered into a few groups.
On this simple problem can you do as well as Marxan? How about if you had 500,000 planning units?

	$\stackrel{0}{\$ 347}$	0		$\stackrel{0}{\$ 52}$	0	0	$\underset{\$ 985}{0}$	1	0	$\$ 207$	0		$\begin{gathered} 0 \\ \$ 276 \end{gathered}$	12		$\begin{gathered} 48 \\ \$ 821 \end{gathered}$	0	69	$\begin{gathered} 4 \\ \$ 122 \end{gathered}$	9	0	$\begin{gathered} 0 \\ \$ 404 \end{gathered}$	0		$\begin{gathered} 0 \\ \$ 300 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 681 \end{gathered}$	91
0	$\begin{gathered} 0 \\ \$ 813 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 537 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 931 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 653 \end{gathered}$	0	71	$\begin{gathered} 43 \\ \$ 919 \end{gathered}$	12	99	$\begin{gathered} 0 \\ \$ 826 \end{gathered}$	1	0	$\begin{gathered} 0 \\ \$ 455 \end{gathered}$	0	17	$\begin{gathered} 0 \\ \$ 983 \end{gathered}$	0	0	$\$ 731$	35	31	$\begin{gathered} 0 \\ \$ 875 \end{gathered}$	0
0	$\begin{gathered} 0 \\ \$ 247 \end{gathered}$	0	55	$\begin{gathered} 40 \\ \$ 462 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 287 \end{gathered}$	0	0	$\begin{gathered} 2 \\ \$ 988 \end{gathered}$	27	70	$\begin{gathered} 0 \\ \$ 85 \end{gathered}$	0	37	$\begin{gathered} 0 \\ \$ 736 \end{gathered}$	56	0	$\begin{gathered} 0 \\ \$ 681 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 479 \end{gathered}$	33	0	$\begin{gathered} 41 \\ \$ 459 \end{gathered}$	0	54	$\begin{gathered} 0 \\ \$ 615 \end{gathered}$	0
0	$\begin{gathered} 0 \\ \$ 378 \end{gathered}$	0	80	$\begin{gathered} 8 \\ \$ 986 \end{gathered}$	0	0	$\begin{gathered} 47 \\ \$ 887 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 392 \end{gathered}$	0	0	$\begin{gathered} 78 \\ \$ 526 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 783 \end{gathered}$	87	66	$\begin{gathered} 0 \\ \$ 224 \end{gathered}$	38	0	$\begin{gathered} 0 \\ \$ 149 \end{gathered}$	0		$\begin{gathered} 0 \\ \$ 268 \end{gathered}$	0	0	$\begin{aligned} & 91 \\ & \$ 90 \end{aligned}$	0
0	$\begin{gathered} 0 \\ \$ 977 \end{gathered}$	0	0	$\stackrel{0}{\$ 74}$	73	0	$\begin{aligned} & 60 \\ & \$ 53 \end{aligned}$	0	25	$\begin{gathered} 79 \\ \$ 390 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 619 \end{gathered}$	0	11	$\begin{gathered} 0 \\ \$ 773 \end{gathered}$	8	0	$\begin{gathered} 0 \\ \$ 952 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 738 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 897 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 580 \end{gathered}$	53
76	$\begin{gathered} 34 \\ \$ 969 \end{gathered}$	0	0	$\begin{aligned} & 90 \\ & \$ 76 \end{aligned}$	0	0	$\begin{gathered} 84 \\ \$ 147 \end{gathered}$	0	0	$\stackrel{0}{\$ 870}$	82	0	$\begin{gathered} 72 \\ \$ 350 \end{gathered}$	26	0	$\begin{gathered} 0 \\ \$ 543 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 607 \end{gathered}$	21	58	$\begin{gathered} 0 \\ \$ 375 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 903 \end{gathered}$	0	0	$\begin{aligned} & 54 \\ & \$ 790 \end{aligned}$	59
75	$\begin{gathered} 0 \\ \$ 729 \end{gathered}$	60	0	$\begin{gathered} 0 \\ \$ 492 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 303 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 289 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 490 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 599 \end{gathered}$	0	91	$\begin{gathered} 0 \\ \$ 407 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 651 \end{gathered}$	57	0	$\begin{aligned} & 42 \\ & \$ 709 \end{aligned}$	97	0	$\begin{gathered} 0 \\ \$ 365 \end{gathered}$	7
0	$\begin{gathered} 0 \\ \$ 571 \end{gathered}$	0	0	$\begin{gathered} 37 \\ \$ 931 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 353 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 64 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 955 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 950 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 855 \end{gathered}$	0	0	$\begin{gathered} 23 \\ \$ 886 \end{gathered}$	0		$\begin{gathered} 41 \\ \$ 840 \end{gathered}$	0	81	$\begin{gathered} 0 \\ \$ 598 \end{gathered}$	37
0	$\begin{gathered} 0 \\ \$ 422 \end{gathered}$	12	0	$\begin{gathered} 0 \\ \$ 252 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 941 \end{gathered}$	\bigcirc	0	$\begin{gathered} 53 \\ \$ 152 \end{gathered}$	24	0	$\begin{gathered} 72 \\ \$ 353 \end{gathered}$	0	0	$\begin{gathered} 93 \\ \$ 123 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 716 \end{gathered}$	0	0	$\begin{gathered} 23 \\ \$ 587 \end{gathered}$	59	0	$\begin{gathered} 0 \\ \$ 346 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 318 \end{gathered}$	0
0	$\begin{gathered} 0 \\ \$ 682 \end{gathered}$	0	11	$\begin{gathered} 0 \\ \$ 891 \end{gathered}$	0	0	$\begin{gathered} 14 \\ \$ 815 \end{gathered}$	50	0	$\begin{gathered} 0 \\ \$ 818 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 726 \end{gathered}$	88	0	$\begin{gathered} 0 \\ \$ 372 \end{gathered}$	0	0	$\begin{gathered} 0 \\ \$ 197 \end{gathered}$	0	48	$\begin{gathered} 0 \\ \$ 89 \end{gathered}$	0	0		0	0	$\begin{gathered} 76 \\ \$ 975 \end{gathered}$	0

Your Results: Features Target Current
 $\begin{array}{lll}\text { A } & 267.4 & 0\end{array}$
 B $\quad 251.20$

Total Cost:

Marxan Results:
Achieve all three targets to
compare with Marxan

This exercise is produced here with the permission and support of:

You can start now.
 You have 15 min to find the best solution. Good luck !!

SUM COST
 $+$
 TARGET GAB
 $+$
 BOUNDARY COST
 (number of free edges * 100)
 =
 Marxan Score

NAME	SUMCOST	TARGET GAB	BOUNDARY COST	MARXAN SCORE
Daniel F	4502	0	2400	6902
Daniel M	5401	0	3600	9101
Vasiliki	5518	0	3200	8718
Niel	5507	0	2200	7707
Benjamin	2912	0	4000	6912
Jongseo	4513	0	7200	11713
Rebecca	6570	2	2200	8772
Keunhyung	5823	119	2000	7942
Elodie				
PacMARA Pacific Marine Analysis \& Research Association				

Results of Marxan

Lowest cost solution = $\mathbf{1 7 7 5}$

Results of Marxan

Lowest cost clumped solution

Now consider...

- More features (a few hundred?)
- More spatial constraints
- The problem gets so large that it is impossible to find a good solution in reasonable amount of time

