Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
76 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Carbon Mitigation by Biofuels or by Saving and Restoring Forests?
The carbon sequestered by restoring forests is greater than the emissions avoided by the use of the liquid biofuels.
Located in Resources / Climate Science Documents
File PDF document Challenges in the conservation, rehabilitation and recovery of native stream salmonid populations: beyond the 2010 Luarca symposium
– In May 2010, I chaired a session on challenges to salmonid conservation at the international symposium ‘Advances in the population ecology of stream salmonids’ in Luarca, Spain. I suggested that in addition to scientific challenges, a major challenge will be improving the links between ecologists, conservationists and policy makers. Because the Luarca symposium focused mainly on ecological research, little time was explicitly devoted to conservation. My objective in this paper is to further discuss the role of ecological research in informing salmonid conservation. I begin with a brief overview of research highlights from the symposium. I then use selected examples to show that ecological research has already contributed much towards informing salmonid conservation, but that ecologists will always be faced with limitations in their predictive ability. I suggest that conservation will need to move forward regardless of these limitations, and I call attention to some recent efforts wherein ecological research has played a crucial role. I conclude that ecologists should take urgent action to ensure that their results are availableto inform resource managers, conservation organisations and policy makers regarding past losses and present threats to native, locally-adapted salmonid stocks.
Located in Resources / Climate Science Documents
File PDF document Changes in Climatic Water Balance Drive Downhill Shifts in Plant Species’ Optimum Elevations
Uphill shifts of species’ distributions in response to historical warming are well documented, which leads to widespread expectations of continued uphill shifts under future warming. Conversely, downhill shifts are often considered anomalous and unrelated to climate change. By comparing the altitudinal distributions of 64 plant species between the 1930s and the present day within California, we show that climate changes have resulted in a significant downward shift in species’ optimum elevations. This downhill shift is counter to what would be expected given 20th-century warming but is readily explained by species’ niche tracking of regional changes in climatic water balance rather than temperature. Similar downhill shifts can be expected to occur where future climate change scenarios project increases in water availability that outpace evaporative demand.
Located in Resources / Climate Science Documents
File PDF document Changes in the Asian monsoon climate during 1700 –1850 induced by preindustrial cultivation
Preindustrial changes in the Asian summer monsoon climate from the 1700s to the 1850s were estimated with an atmospheric general circulation model (AGCM) using historical global land cover/use change data reconstructed for the last 300 years. Extended cultivation resulted in a decrease in monsoon rainfall over the Indian subcontinent and southeastern China and an associated weakening of the Asian summer monsoon circulation. The precipitation decrease in India was marked and was consistent with the observational changes derived from examining the Himalayan ice cores for the concurrent period. Between the 1700s and the 1850s, the anthropogenic increases in greenhouse gases and aerosols were still minor; also, no long-term trends in natural climate variations, such as those caused by the ocean, solar activity, or volcanoes, were reported. Thus, we propose that the land cover/ use change was the major source of disturbances to the climate during that period. This report will set forward quantitative ex-amination of the actual impacts of land cover/use changes on Asian monsoons, relative to the impact of greenhouse gases and aerosols, viewed in the context of global warming on the interannual, decadal, and centennial time scales. atmospheric water balance 􏰅 climate change 􏰅 historical land-cover change 􏰅 monsoon rainfall
Located in Resources / Climate Science Documents
File PDF document Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models
We find a consistent and statistically significant increase in the intensity of future extreme winter precipitation events over the western United States, as simulated by an ensemble of regional climate models (RCMs) driven by IPCC AR4 global climate models (GCMs). All eight simulations analyzed in this work consistently show an increase in the intensity of extreme winter precipitation with the multi-model mean projecting an area-averaged 12.6% increase in 20-year return period and 14.4% increase in 50-year return period daily precipitation. In contrast with extreme precipitation, the multi-model ensemble shows a decrease in mean winter precipitation of approximately 7.5% in the southwestern US, while the interior west shows less statistically robust increases.
Located in Resources / Climate Science Documents
File PDF document Citizen Involvement in the U.S. Endangered Species Act
Data on listed species refute critiques of citizen involvement in the U.S. Endangered Species Act.
Located in Resources / Climate Science Documents
File PDF document Classification of Climate Change-Induced Stresses on Biological Diversity
Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. Keywords: adaptation, conservation, strategies,adaptive management,climatechange,conservation planning, conservation targets, hierarchical framework, threats to biological diversity
Located in Resources / Climate Science Documents
File PDF document Columbia Water Center White Paper America’s Water Risk: Water Stress and Climate Variability
The emerging awareness of the dependence of business on water has resulted in increasing awareness of the concept of “Water Risk” and the diverse ways in which water can pose threats to businesses in certain regions and sectors. Businesses seek to secure sustainable income. To do so, they need to maintain a competitive advantage and brand differentiation. They need secure and stable supply chains. Their exposure risks related to increasing scarcity of water can come in a variety of forms at various points in the supply chain. Given increasing water scarcity and the associated deterioration of the quantity and quality of water sources in many parts of the world, many “tools” have been developed to map water scarcity riskor water risk. Typically, these tools are based on estimates of the average water supply and demand in each unit of analysis.Often, they are associated with river basins, while business is associated with cities or counties. They provide a useful first look at the potential imbalance of supply and demand to businesses.
Located in Resources / Climate Science Documents
Connecting the Connecticut: Partners create science-based blueprint for conserving New England’s largest river system
It started two years ago as an experiment in combining big data with a big conservation vision for the 11,250 square-mile Connecticut River watershed.
Located in News & Events
File Conservation in the face of climate change: The roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty
The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA.
Located in Reports & Documents