Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
12 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Editorial: The “New Conservation”
EDITORIAL: OPENING PARAGRAPHS A powerful but chimeric movement is rapidly gaining recognition and supporters. Christened the “new conservation,” it promotes economic development, poverty alleviation, and corporate partnerships as surrogates or substitutes for endangered species listings, protected areas, and other mainstream conservation tools. Its proponents claim that helping economically disadvantaged people to achieve a higher standard of living will kindle their sympathy and affection for nature. Because its goal is to supplant the biological diversity–based model of traditional conservation with something entirely different, namely an economic growth–based or humanitarian movement, it does not deserve to be labeled conservation.
Located in Resources / Climate Science Documents
File PDF document Classification of Climate Change-Induced Stresses on Biological Diversity
Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. Keywords: adaptation, conservation, strategies,adaptive management,climatechange,conservation planning, conservation targets, hierarchical framework, threats to biological diversity
Located in Resources / Climate Science Documents
File PDF document COMMENTARY: Overshoot, adapt and recover
We will probably overshoot our current climate targets, so policies of adaptation and recovery need much more attention, say Martin Parry, Jason Lowe and Clair Hanson. FROM THE TEXT: “We should be planning to adapt to at least 4°C of warming.”
Located in Resources / Climate Science Documents
File PDF document Comment: Time to Model all Life on Earth
To help transform our understanding of the biosphere, ecologists — like climate scientists — should simulate whole ecosystems, argue Drew Purves and colleagues. FROM THE TEXT: General circulation models, which simulatethe physics and chemistry of Earth’s land, ocean and atmosphere, embody scientists’ best understanding of how the climate system works and are crucial to making predictions and shaping policies. We think that analogous general ecosystem models (GEMs) could radically improve understanding of the biosphere and inform policy decisions about biodiversity and conservation.
Located in Resources / Climate Science Documents
File PDF document Comment: Don’t judge species on their origins
SUMMARY: Conservationists should assess organisms on environmental impact rather than on whether they are natives, argue Mark Davis and 18 other ecologists. FROM THE TEXT: Nativeness is not a sign of evolutionary fitness or of a species having positive effects.The insect currently suspected to be killing more trees than any other in North Americais the native mountain pine beetle Dendroctonus ponderosae. Classifying biota according to their adherence to cultural standards of belonging, citizenship, fair play and morality does not advance our understanding of ecology. Over the past few decades, this perspective has led many conservation and restoration efforts down paths that make little ecological or economic sense
Located in Resources / Climate Science Documents
File PDF document Challenges in the conservation, rehabilitation and recovery of native stream salmonid populations: beyond the 2010 Luarca symposium
– In May 2010, I chaired a session on challenges to salmonid conservation at the international symposium ‘Advances in the population ecology of stream salmonids’ in Luarca, Spain. I suggested that in addition to scientific challenges, a major challenge will be improving the links between ecologists, conservationists and policy makers. Because the Luarca symposium focused mainly on ecological research, little time was explicitly devoted to conservation. My objective in this paper is to further discuss the role of ecological research in informing salmonid conservation. I begin with a brief overview of research highlights from the symposium. I then use selected examples to show that ecological research has already contributed much towards informing salmonid conservation, but that ecologists will always be faced with limitations in their predictive ability. I suggest that conservation will need to move forward regardless of these limitations, and I call attention to some recent efforts wherein ecological research has played a crucial role. I conclude that ecologists should take urgent action to ensure that their results are availableto inform resource managers, conservation organisations and policy makers regarding past losses and present threats to native, locally-adapted salmonid stocks.
Located in Resources / Climate Science Documents
File PDF document Conservation VALUE OF ROADLESS AREAS FOR VULNERABLE FISH AND Wildlife Species in the Crown of the Continent Ecosystem, Montana
The Crown of the Continent Ecosystem is one of the most spectacular landscapes in the world and most ecologically intact ecosystem remaining in the contiguous United States. Straddling the Continental Divide in the heart of the Rocky Mountains, the Crown of the Continent Ecosystem extends for >250 miles from the fabled Blackfoot River valley in northwest Montana north to Elk Pass south of Banff and Kootenay National Parks in Canada. It reaches from the short-grass plains along the eastern slopes of the Rockies westward nearly 100 miles to the Flathead and Kootenai River valleys. The Crown sparkles with a variety of dramatic landscapes, clean sources of blue waters, and diversity of plants and animals.Over the past century, citizens and government leaders have worked hard to save the core of this splendid ecosystem in Montana by establishing world-class parks and wildernesses – coupled with conservation of critical wildlife habitat on state and private lands along the periphery. These include jewels such as Glacier National Park, the Bob Marshall-Scapegoat-Great Bear Wilderness, the first-ever Tribal Wilderness in the Mission Mountains, numerous State of Montana Wildlife Management Areas (WMAs), and vital private lands through land trusts such as The Nature Conservancy. Their combined efforts have protected 3.3 million acres and constitute a truly impressive commitment to conservation. It was a remarkable legacy and great gift …but, in the face of new challenges, it may not have been enough.
Located in Resources / Climate Science Documents
File PDF document Effect of Risk Aversion on Prioritizing Conservation Projects
Agencies making decisions about what threat mitigation actions to take to save which species frequently face the dilemma of whether to invest in actions with high probability of success and guaranteed benefits or to choose projects with a greater risk of failure that might provide higher benefits if they succeed. The answer to this dilemma lies in the decision maker’s aversion to risk—their unwillingness to accept uncertain outcomes. Little guidance exists on how risk preferences affect conservation investment priorities. Using a prioritization approach based on cost effectiveness, we compared 2 approaches: a conservative probability threshold approach that excludes investment in projects with a risk of management failure greater than a fixed level, and a variance-discounting heuristic used in economics that explicitly accounts for risk tolerance and the probabilities of management success and failure. We applied both approaches to prioritizing projects for 700 of New Zealand’s threatened species across 8303 management actions. Both decision makers’ risk tolerance and our choice of approach to dealing with risk preferences drove the prioritization solution (i.e., the species selected for management). Use of a probability threshold minimized uncertainty, but more expensive projects were selected than with variance discounting, which maximized expected benefits by selecting the management of species with higher extinction risk and higher conservation value. Explicitly incorporating risk preferences within the decision making process reduced the number of species expected to be safe from extinction because lower risk tolerance resulted in more species being excluded from management, but the approach allowed decision makers to choose a level of acceptable risk that fit with their ability to accommodate failure. We argue for transparency in risk tolerance and recommend that decision makers accept risk in an adaptive management framework to maximize benefits and avoid potential extinctions due to inefficient allocation of limited resources. Keywords: conservation decisionmaking,cost-effectiveness analysis, management effectiveness,Project Prioritization Protocol, risk analysis, risk tolerance, threatened species, uncertainty
Located in Resources / Climate Science Documents
File PDF document Climate change and the ecologist
The evidence for rapid climate change now seems overwhelming. Global temperatures are predicted to rise by up to 4 °C by 2100, with associated alterations in precipitation patterns. Assessing the consequences for biodiversity, and how they might be mitigated, is a Grand Challenge in ecology.
Located in Resources / Climate Science Documents
File PDF document Are conservation organizations configured for effective adaptation to global change?
Conservation organizations must adapt to respond to the ecological impacts of global change. Numerous changes to conservation actions (eg facilitated ecological transitions, managed relocations, or increased corridordevelopment) have been recommended, but some institutional restructuring within organizations may also be needed. Here we discuss the capacity of conservation organizations to adapt to changing environmental conditions, focusing primarily on public agencies and nonprofits active in land protection and management in the US. After first reviewing how these organizations anticipate and detect impacts affecting target species and ecosystems, we then discuss whether they are sufficiently flexible to prepare and respond by reallocating funding, staff, or other resources. We raise new hypotheses about how the configuration of different organizations enables them to protect particular conservation targets and manage for particular biophysical changes that require coordinated management actions over different spatial and temporal scales. Finally, we provide a discussion resource to help conservation organizations assess their capacity to adapt.
Located in Resources / Climate Science Documents